
InfiniiVision 3000T X-Series Oscilloscopes

Table of Contents

Touch, Discover, Solve	03
Touch: Designed-For-Touch Interface and Capacitive Touch Screen Simplify Use	04
Discover: The Industry's Fastest Uncompromised Update Rate Increases the Chance of Finding Anomalies	06
Discover: Excellent Signal Integrity Allows you to See More Signal Detail	09
Discover: Industry Exclusive Zone Touch Trigger Makes Triggering Simple	10
Discover: Standard Segmented Smart Memory Allows you to Capture Longer Periods of Time at High Sample Rates	12
Discover: Dedicated Search and Navigation Helps you Navigate Deep Memory	13
Solve: Integrated Hardware-Based Serial Decoding and Triggering (Option) Makes Easy Work of Low Speed Serial Buses	14
Solve: Segmented Smart Memory Combined With Protocol Analysis Enables Insights Over Long Periods Of Time	15
Solve: Dedicated Frequency/Spectrum Analysis Allows you to Time-Correlate Analog, Digital, and frequency Domain Signals in a Single Instrument	16
Solve: Standard Advanced Math Capabilities Allow New Views of Signals	17
Solve: Class Leading Measurements Provide Quick Answers	18
Solve: 7-in-1 Integration Allows New Measurement Possibilities	19
Solve: Hardware Accelerated Mask/Limit Testing (Option) Makes It Easy to See the Performance of your Device	21
Solve: Integrated Power Measurements and Analysis (Option) Make Short Work of Power Measurements	21
Solve: Innovative Power Rail Probe (Option) Allows Enhanced Views	22
Solve: Video Analysis (Option)	22
Configuration	26
Performance Characteristics	28
License-Only Bandwidth Upgrades and Measurement Applications	37
Return-to-Keysight Service Center Bandwidth Upgrades	38

Touch, Discover, Solve

The InfiniiVision 3000A X-Series redefined oscilloscopes. It saw the most signal detail, provided more functionality than any other oscilloscope, and gave you maximum investment protection. It was also the most successful oscilloscope in Hewlett Packard, Agilent and Keysight Technologies, Inc.'s history. The 3000T X-Series continues that legacy.

The 3000T X-Series takes everything that was revolutionary about the A model and adds a capacitive touch screen, a user interface designed for **touch**, and the exclusive zone touch trigger, all combined with an industry-leading uncompromised update rate of 1 million wfm/s to give you the confidence that you're seeing all of your signal detail, and the ability to **discover** any issues. And the addition of new analysis capabilities help you **solve** your hardest problems quickly.

The 3000T X-Series once again redefines what you can expect in a general purpose oscilloscope by providing all of the performance and capability you need to get to measurement insights faster:

Touch:

- 8.5-inch capacitive touch screen
- Designed for touch interface

Discover:

- Industry's fastest uncompromised waveform update rate
- Exclusive zone touch trigger

Solve:

- Wide range of serial decodes
- 7-in-1 instrument integration
- Time/frequency domain correlation

Figure 1. InfiniiVision 3000 X-Series with MegaZoom IV smart memory technology.

Touch: Designed-For-Touch Interface and Capacitive Touch Screen Simplify Use

From the start of product development, we designed every aspect of this oscilloscope to be seamlessly driven by a touch interface. Large, easy-to-touch targets, a graphical user interface that adapts to show you more and be easier to touch, and a large, sensitive, capacitive touch screen all combine to make operation quick and natural, just like your favorite tablet devices.

Capacitive touch screen technology enables productivity

The user interface allows you to use the alphanumeric pad for quick annotation, place waveforms or cursors in exact positions and drag docking panels across the screen to see more measurement information.

The 3000T X-Series offers three ways to access key menus and features: touch GUI for those that prefer tablet or smart phone touch interfaces, front panel buttons and knobs for the traditional oscilloscope users, and Keysight Insight pull down menu for users who prefer Windows-like operations. The 3000T X-Series also offers a "touch off" button as well as USB mouse and keyboard support.

Touch interface simplifies documentation

The availability of up to 10 annotations on screen makes it easy to highlight key items on screen shots. Streamline documentation with the ability to input information via a popup soft keyboard on the touch screen or a USB keyboard. A sidebar displays additional information without covering the waveform graticule, and allows you to dock and scroll through multiple measurement values. Touch gestures (like flicking) make navigating lists or moving between segment waveforms easy.

In addition to the benefits of touch, built-in USB host and USB device ports make PC connectivity easy. The BV0004B oscilloscope control and automation application within BenchVue lets you control and visualize the 3000T X-Series and multiple measurements simultaneously. It lets you build automated test sequences just as easily as you can with the front panel. Save time with the ability to export measurement data to Excel, Word and MATLAB in three clicks. Monitor and control your 3000T X-Series with a mobile device from anywhere. Simplify your testing with BenchVue software. Learn more at www.keysight.com/find/BenchVue.

Figure 2. The industry's first 8.5" capacitive touch display with large, touchable targets.

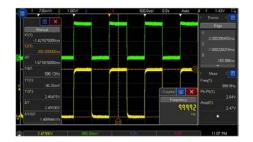


Figure 3. Side bar with movable docks allows information to be placed on the screen precisely where you want it for documentation.

Figure 4. Use BenchVue for remotely logging and plotting measurement data.

Touch: Designed-For-Touch Interface and Capacitive Touch Screen Simplify Use (Continued)

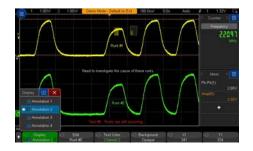


Figure 5. See up to ten annotations on screen at once for documentation. The standard touch screen makes inputting notes simple.

Figure 6. With the optional LAN/ VGA module you can email yourself setups, data and screenshots.

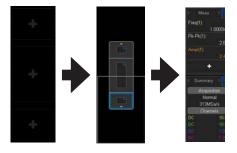


Figure 7. A dock-able sidebar allows you to customize how you view your measurements.

Redefine your remote Web control oscilloscope experience

The 3000T X-Series offers traditional control via a PC Web browser, but also supports remote control through popular tablet devices when using the optional LAN/VGA interface.

Figure 8. Remotely control the 3000T X-Series via tablet device.

Discover: The Industry's Fastest Uncompromised Update Rate Increases the Chance of Finding Anomalies

Industry-leading uncompromised update rate

If you can't see the problem, you can't fix the problem. With an industry-leading update rate of over one million waveforms per second, the InfiniiVision 3000T X-Series gives you the highest probability of capturing random and infrequent events that you would miss on an oscilloscope with a lower waveform update rate.

Powered by MegaZoom IV smart memory technology, the InfiniiVision 3000T X-Series not only lets you see more waveforms, but it has the uncompromised ability to find the most difficult problems in your design under any conditions. Unlike other oscilloscopes, uncompromised ability means:

- Always-fast, responsive operation
- No slowdown with logic channels on
- No slowdown with protocol decoding on
- No slowdown with math functions on
- No slowdown with measurements on
- No slowdown with vectors on
- No slowdown with sinx/x interpolation on

What is waveform update rate?

As oscilloscopes acquire data, process it, and plot it to the screen, there is inevitable "dead time," or the time oscilloscopes miss signals completely. In general, the faster the waveform update rate, the shorter the dead time. The shorter the dead time, the more likely an oscilloscope is to capture anomalies and infrequent events. This is why it is important to select an oscilloscope with a fast waveform update rate. Figures 7 and 8 demonstrate the difference between a slower update rate and a faster update rate.

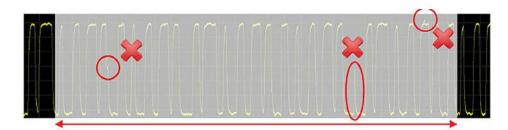


Figure 9. Other vendor's oscilloscope with 50,000 waveforms/second. A long dead time decreases your chances of capturing infrequent events.

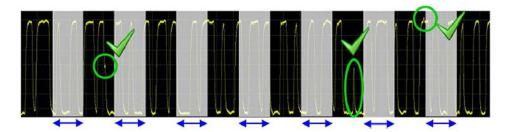


Figure 10. InfiniiVision 30000T X-Series with 1,000,000 waveforms/second. A short dead time increases your chancs of capturing infrequent events.

Discover: The Industry's Fastest Uncompromised Update Rate Increases the Chance of Finding Anomalies (Continued)

But all specs aren't equal.

Many vendors claim an update rate specification, but that is only in a special mode, or without any features turned on. Table 1 shows the 3000T X-Series' update rate versus a competing oscilloscope.

While all scopes update rate will vary to some degree by the timebase setting, it is critical that the update rate remain constant regardless of the functionality you are using within the oscilloscope.

Table 1. Measured update rate between the 3000T X-Series and the Danaher Tektronix MDO3000. Note how the update rate fluctuates wildly on the MDO3000 based on different settings/features.

	10 ns/div					
	Keysight 30	00T X-Series	Tektronix MD03000 Series			
	Update rate	Probability	Update rate	Probability		
Max with no features on	1,114,000	94%	281,000	50%		
Max with digital ch on	1,101,000	94%	132	0.03%		
Max with measurements on	1,114,000	94%	2,200	0.55%		
Max with FFT on	1,114,000	94%	2,200	0.55%		
Max with serial on	1,100,000	94%	1,800	0.45%		
Max with search on	1,113,000	94%	2,200	0.55%		
Max with ref wfms on	1,113,000	94%	2,200	0.55%		

Why is an uncompromised update rate important?

When debugging or troubleshooting a project, it is important that you see as much signal detail as possible. A fast update rate is just part of the overall equation to determine the likelihood of seeing an anomaly. The frequency of the anomaly, the timebase setting of the oscilloscope and the amount of time you allow the oscilloscope to see the anomaly all come in to play:

 $P_{+} = 100 \times (1-[1-RW]^{(U \times t)})$

where

P₊ = Probability of capturing anomaly in "t" seconds

t = Observation time

U = Scope's measured waveform update rate

R = Anomalous event occurance rate

W = Display acquisition window = Timebase setting x 10

Therefore, it is important to select an oscilloscope with the fastest uncompromised update rate to allow enough time to increase your chances of seeing the glitch. In Table 1, in addition to the measured update rate, we show the probability of seeing a glitch that happens 5 times a second while allowing the oscilloscope to acquire for 5 seconds. With the 3000T X-Series you maximize your chances of seeing the infrequent glitch. With the competing scope, if you are using any of the other features like measurements, or search or digital channels, the update rate slows considerably. The only option you have in this case is to allow the oscilloscope to run longer. For example, if you are using digital channels you'll have to let the scope run over 8,000 times longer to get a similar probability to the uncompromised update rate of the 3000T X-Series. That's almost 12 hours of time versus 5 seconds!

Discover: The Industry's Fastest Uncompromised Update Rate Increases the Chance of Finding Anomalies (Continued)

MegaZoom IV smart memory technology enables uncompromised update rate

Traditionally, CPU processing was the major bottleneck for oscilloscope waveform update rate and responsiveness. Typically, the CPU handles interpolations, logic channel plotting, serial bus decoding, measurements and more, and the waveform update rate drops dramatically as these features are turned on.

The InfiniiVision 3000T X-Series requires minimum support from a CPU, as most core operations are handled by Keysight proprietary technology, the MegaZoom IV smart memory ASIC. MegaZoom includes hardware serial decoders and hardware mask/limit testing capability, plots analog and digital data directly to the display, supports GUI operation, and integrates additional instruments like the WaveGen function/arbitrary waveform generator.

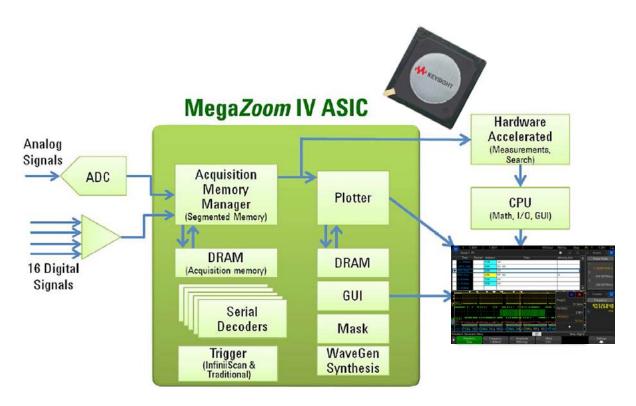


Figure 11. The 3000T X-Series oscilloscopes' uncompromised responsiveness, speed and waveform update rate are enabled by the MegaZoom IV, smart memory ASIC. The CPU is not used for core waveform operations.

Discover: Excellent Signal Integrity Allows you to See More Signal Detail

The 3000T X-Series has excellent signal integrity, including full bandwidth to 1 mV/div and the ability to get up to 12-bits of resolution using the high resolution acquisition mode.

Some oscilloscopes in this class limit their bandwidth at smaller volt-per-division settings without on-display user notifications. This is likely to keep the noise acceptable at lower volt-per-division settings.

Table 2 shows a comparison of the typical noise floor at 20 μ /div between the normal and high resolution mode. You will notice that the noise floor performance improves as much as five times.

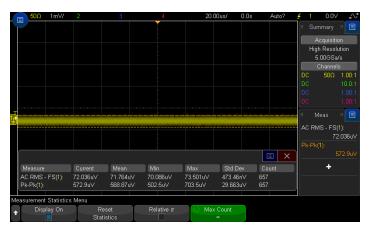


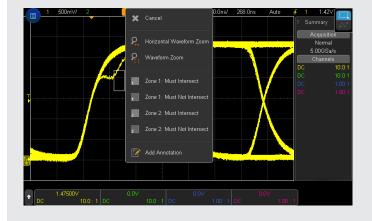
Figure 12. High resolution mode allows you to lower your noise and increase your resolution up to 12-bits.

Table 2. Noise comparison between the normal and high-resolution mode at 20 μ /div.

50 Ω 1 GHz bandwidth Vrms measurement (units = mV)								
Vertical setting	Normal mode	High resolution mode	Notes					
1 mV	0.277	0.072	Some other manufacturers will limit their bandwidth significantly at these					
2 mV	0.277	0.072	vertical settings, but the Keysight 3000T X-Series provides full bandwidth					
5 mV	0.297	0.081	at all settings.					
10 mV	0.352	0.081						
20 mV	0.597	0.102						
50 mV	1.500	0.340						
100 mV	2.560	0.480						
200 mV	5.500	1.050						
500 mV	15.200	3.630						
1 V	26.000	4.830						

Discover: Industry Exclusive Zone Touch Trigger Makes Triggering Simple

An uncompromised update rate allows you to see an anomaly, but to continue the debug process you have to isolate it. Setting up a trigger has been a challenge since oscilloscopes introduced a triggered waveform. While oscilloscopes have added more and more triggering capability over the years, setting up triggers has remained complex at best and impossible at worst.


Zone touch trigger eliminates the complexity of setting up advanced triggers. Now, if you can see the event on the display of the oscilloscope, you can trigger on it just by drawing a box on the signal you want to isolate.

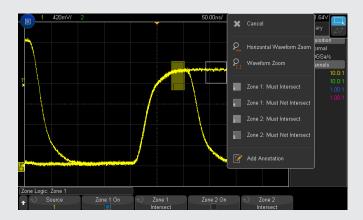
See how easy Zone touch triggering can be with these examples.

Steps to isolate a non-monotonic edge: 3000T X-Series:

- Draw box on non-monotonic edge
- Select "must intersect"

In some cases you may have to select the appropriate source if it wasn't already selected.

Traditional Scopes with Advanced Triggers (assuming the update rate is fast enough to see what you want to trigger on):


- 1. Determine what trigger makes the most sense for the signal you are trying to isolate. In this case, we'll try a rise-time trigger first.
- 2. Select cursors
- 3. Move cursor a to 10% level
- 4. Move cursor b to 90% level on the non-monotonic edge
- 5. Obtain the delta time (rise time) between the cursors
- 6. Select trigger menu
- 7. Press trigger type
- 8. Select Rise/Fall time Trigger
- 9. Select your source
- 10. Select your slope
- 11. Select when you want it to trigger is it less than, greater than, equal to, not equal to. We'll select greater than.
- 12. Dial in the "greater than" setting to the measured rise time
- 13. Adjust your low threshold to the 10% level
- 14. Adjust your high threshold to the 90% level

Discover: Industry Exclusive Zone Touch Trigger Makes Triggering Simple (Continued)

Steps to trigger on a runt signal: 3000T X-Series:

- 1. Draw box on the runt
- 2. Select "must intersect"
- 3. Draw a second box if needed to further isolate the runt from other runts
- 4. Select "must intersect" or "must not intersect"

In some cases you may have to select the appropriate source if it wasn't already selected.

Traditional Scopes with Advanced Triggers (assuming the update rate is fast enough to see what you want to trigger on):

- 1. Determine what trigger makes the most sense for the signal you are trying to isolate. In this case, we'll use a runt trigger first.
- 2. Select trigger menu
- 3. Press trigger type
- 4. Select runt Trigger
- 5. Select your source
- 6. Select the runt's polarity
- 7. Adjust your low threshold to below the runt
- 8. Adjust your high threshold to above the runt
- 9. Select when you'll trigger in this case, we want to trigger on the exact pulse width of the runt
- 10. Select cursors
- 11. Move cursor a to the rising edge of the pulse at the 50% mark
- 12. Move cursor b to the falling edge of the pulse at the 50% mark
- 13. Obtain the delta time (pulse width) between the cursors
- 14. Adjust the runt width to be equal to the pulse width that was measured

Discover: Standard Segmented Smart Memory Allows you to Capture Longer Periods of Time at High Sample Rates

Acquisition memory size is an essential oscilloscope specification because it determines sustainable sample rate and the amount of time you can capture in a single acquisition. In general, longer memory is better. However, no memory will always be long enough to capture all the signals you need, especially when capturing infrequent anomalies, data bursts, or multiple serial bus packets. Segmented memory acquisition lets you selectively capture and store important signal activity without capturing unimportant signal idle time. In addition, it provides a time stamp of each segment relative to the first trigger event to enable analysis of the frequency of the event. Segmented memory comes standard on the 3000T X-Series.

Figure 13 shows segmented memory successfully capturing 100 small and large glitch events at 5 GSa/s in 47 seconds. Traditional memory architecture would require almost 203 Gpts of memory to accomplish the same result! This memory is not available on any scope in the market.

Furthermore, segmented memory discovered that the worst offender glitch happened 40 seconds from the first trigger event, or at the 95th glitch. It also found out a unique glitch took place 13 seconds after the first glitch. As shown in figure 13a, you can overlay all segments to have a comprehensive view as well.

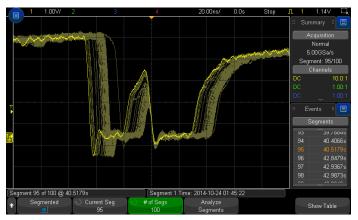


Figure 13a. Screen showing an overlay of all 100 segments for worst case waveform analysis.

Figure 13. Segmented memory reveals different types of glitches are taking place.

Discover: Dedicated Search and Navigation Helps you Navigate Deep Memory

Parametric and serial bus search and navigation comes standard on the 3000T X-Series oscilloscopes. When you are capturing long, complex waveforms using an oscilloscope's acquisition memory, manually scrolling through stored waveform data to find specific events of interest can be slow and cumbersome. With automatic search and navigation capability, you can easily set up specific search criteria and then quickly navigate to "found and marked" events. Available search criteria include edges, pulse width (time-qualified), rise/fall times (time-qualified), runt pulses (time-and level-qualified), frequency peaks (FFT function, threshold and excursion qualified), and serial bus frames, packets, and errors.

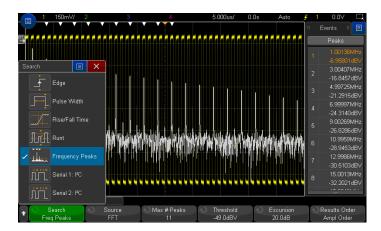


Figure 14. The 3000T X-Series was set up to capture clock signals for FFT analysis. Using the search and navigation capability, the scope was able to find, mark (white triangles) and quickly navigate to the first 11 frequency peaks occurrences. You can sort it in the order of frequency or amplitude.

Close-up on buttons on the front panel of the scope. Alternatively, you also can use the touch navigation control.

Solve: Integrated Hardware-Based Serial Decoding and Triggering (Option) Makes Easy Work of Low Speed Serial Buses

Keysight InfiniiVision oscilloscopes, including the new 3000T X-Series, use hardware-based serial protocol decoding. Some other vendors use software post-processing techniques to decode serial packets/frames, and therefore have slow waveform and decode capture rates and could miss critical events and errors due to a long dead-time. Faster decoding with hardware-based technology enhances the probability of capturing infrequent serial communication errors.

After capturing serial bus communication, you can easily perform a search operation based on specific criteria and then quickly navigate to bytes/frames of serial data that satisfy that search criteria. The 3000T X-Series can decode two serial buses simultaneously using hardware based decoding, and display the captured data in a time interleaved "lister" display.

Serial protocol decoding can be used simultaneously with segmented memory and Zone touch triggering. The 3000T X-Series has the most decode/trigger options in this class of instrument including: I²C, SPI, RS232/422/485/UART, CAN, CAN-FD (CAN-FD ISO), CAN-dbc, LIN, LIN symbolic, SENT, CXPI, FlexRay, MIL-STD 1553, ARINC 429, and I²S.

SERIAL DECODE AND TRIGGER OPTIONS

The 3000T X-Series supports a range of different serial decode and trigger options including:

- I²C
- SPI (2/3/4 wire)
- RS232/422/485/UART
- CAN
- CAN-dbc
- CAN-FD (CAN-FD ISO)
- LIN
- LIN symbolic
- SENT
- CXPI
- FlexRay
- MIL-STD 1553
- ARINC 429
- USB PD
- $I^{2}S$
- User-definable Manchester
- User-definable NRZ

Figure 15. I²C decode and trigger.

Figure 16. RS232 decode and trigger.

Figure 17. CAN-FD decode and trigger.

Figure 18. SPI 4wire decode and trigger.

Figure 19. Multi-bus time aligned decode.

Solve: Segmented Smart Memory Combined With Protocol Analysis Enables Insights Over Long Periods Of Time

Segmented memory works in conjunction with any of the optional serial protocol decodes. For example, by setting the trigger condition to "SENT serial bus error," segmented memory captures and stores only SENT pulse period error packets and stitches together each segment for easy viewing of the decoded data in the lister. You can quickly compare time tags to discover time intervals between errors.

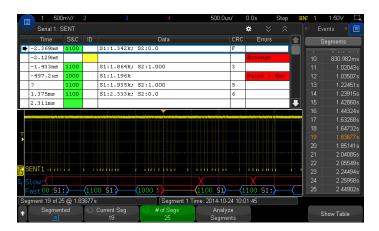


Figure 20. Segmented memory being used in conjunction with SENT bus serial decode resulting in maximum insight to the serial bus.

Solve: Dedicated Frequency/Spectrum Analysis Allows you to Time-Correlate Analog, Digital, and frequency Domain Signals in a Single Instrument

Viewing the frequency content of waveforms is greatly simplified by a dedicated FFT button and level adjustment knobs. Pop up keypads make inputting start, stop, span and center frequency easy. And the new problem solving feature called "gated FFT", unique in this class of instrument, lets you time correlate the analog, digital, and frequency domain to aid in analysis and debug. In addition, there are new capabilities for peak searching, max and min hold and averaging of FFTs to increase dynamic range.

When gated FFT is on, the oscilloscope goes into zoom mode. The FFT analysis shown in the zoomed (bottom) window is taken from the period of time indicated by the zoom box in the main (top) window. In the gated FFT mode, touch and flick the zoom box through the acquisition to investigate how the FFT analysis changes over time, correlating the RF phenomenon with the analog and digital phenomenon.

Figure 21a through 21d show a simple gated FFT example observing a RF signal frequency transition from 400 MHz to 200 MHz, time correlated to both the SPI controlling signal (digital) and a VCO enable signal (analog). Note, you can also visualize the RF signal itself in the time domain to gain additional insight such as a gap in the RF time domain waveform.

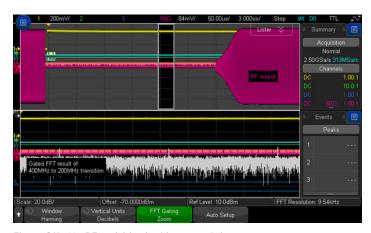


Figure 21b. No RF activities in this zoomed time

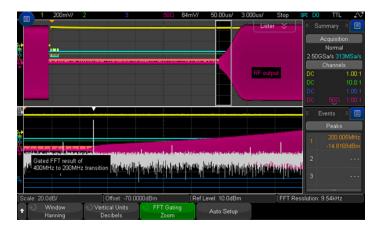


Figure 21c. Start observing the RF signal at 200 MHz. You can validate this from the RF analog waveform as well.

Figure 21a. Triggered on a SPI command, the RF signal is still at 400 MHz as indicated in the frequency peak search result lister.

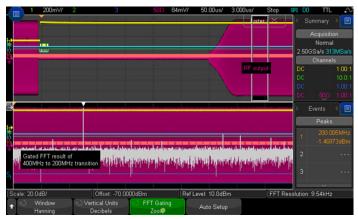


Figure 21d. RF signal settled down at 200 MH as indicated in the search lister.

Solve: Standard Advanced Math Capabilities Allow New Views of Signals

Advanced math analysis provides a variety of additional math functions and comes standard on the 3000T X-Series. Additionally, math functions can be nested to provide additional insight into your designs. You can create up to two math functions, with one math function and FFT displayed at a time.

ADVANCED MATH

The 3000T X-Series supports up to two math functions with an assortment of operators, transforms, filters and visualizations:

Operators

- Add, subtract, multiply, divide

Transforms

- Differentiate, integrate
- FFT (magnitude and phase)
- -Ax+B
- Squared, square root
- Absolute value
- Common logarithm, natural logarithm
- Exponential, base 10 exponential

Filters

- Low-pass filter, high-pass filter
- Averaged value
- Smoothing
- Envelope

Visualizations

- Magnify
- Max and min hold
- Measurement trend
- Chart logic bus timing, chart logic bus state
- Maximum and minimum
- Peak-Peak

Solve: Class Leading Measurements Provide Quick Answers

Automatic measurements are the essential tool of an oscilloscope. In order to make quick and efficient measurements, the 3000T X-Series provides 37 powerful automatic measurements and can display up to 8 at a time. Measurements can be gated by auto select, main window, zoom window, or cursors and include full statistics.

MEASUREMENTS

The 3000T X-Series supports 38 automated measurements:

Voltage

 Peak-to-peak, maximum, minimum, amplitude, top, base, overshoot, pre-shoot, average- N cycles, average- full screen, DC RMS- N cycles, DC RMS- full screen, AC RMS- N cycles, AC RMS- full screen (standard deviation), ratio- N cycles, ratio- full screen

Time

 Period, frequency, counter, + width, - width, burst width, duty cycle, bit rate, rise time, fall time, delay, phase, X at min Y, X at max Y

Count

 Positive pulse count, negative pulse count, rising edge count, falling edge count

Miyed

- Area- N cycles, area- full screen

Counter

- Built-in frequency counter

Solve: 7-in-1 Integration Allows New Measurement Possibilities

In addition to the class leading oscilloscope and powerful serial protocol analysis capabilities, the 3000T X-Series offers five additional integrated instrument capabilities not always found in this class of oscilloscope.

Integrated mixed signal oscilloscope (MSO - optional)

The 3000T X-Series offers 16 optional, integrated and upgradable digital channels. Digital content is everywhere in today's designs and traditional 2 and 4 channel oscilloscopes do not always provide enough channels for the job at hand.

With an additional 16 integrated digital channels, you now have up to 20 channels of time-correlated acquisition and viewing on the same instrument. In addition to offering powerful triggering across the analog and digital channels, this also gives you additional channels to use for serial decode and triggering. And if you buy a 2 or 4 channel DSO, you can upgrade it at any time to an MSO with a software license.

Frequency Response Analysis (FRA) Option

Frequency Response Analysis (FRA) is an often-critical measurement used to characterize the frequency response (gain and phase versus frequency) of a variety of today's electronic designs, including passive filters, amplifier circuits, and negative feedback networks of switch mode power supplies (loop response). InfiniiVision 3000T X-Series oscilloscopes licensed with the DSOXT3FRA option use the oscilloscope's built-in waveform generator (WaveGen) to stimulate the circuit under test at various frequency settings and capture the input and output signals using two oscilloscope channels. At each test frequency, the oscilloscope measures, computes, and plots gain (20LogVout/Vin) and phase logarithmically.

Integrated WaveGen: Built-in 20 MHz function/arbitrary waveform generator (optional)

The 3000T X-Series offers an integrated 20 MHz function/ arbitrary waveform generator, available with modulation support (DSOX3WAVEGEN). The function generator provides stimulus output of sine, square, ramp, pulse, DC, Sinc (x), exponential rise/fall, cardiac, Gaussian Pulse and noise waveforms to your device under test. The modulation feature supports AM, FM, and FSK modulations with modulation shapes of sine, square, and ramp. The generator can output a continuous or a single-shot waveform. With AWG functionality, you can store waveforms from analog channels or reference memory to the arbitrary memory and output from WaveGen. Then easily create or edit the waveform using the built-in editor via touch and the large screen or by using Keysight's Benchlink Waveform Builder software: www.keysight.com/find/33503.

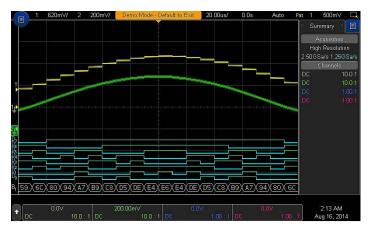


Figure 24. Optional digital channels allow a timing view of up to 16 channels. Tightly integrated, they work with the analog triggers and serial triggers/decoding.

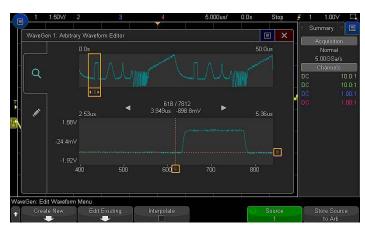


Figure 25. Optional arbitrary waveform generator provides easy access to stimulus. The integrated arbitrary waveform generator makes capturing, modifying and replaying signals simple.

Solve: 7-in-1 Integration Allows New Measurement Possibilities (Continued)

Integrated DVM: Standard 3-digit digital voltmeter

An integrated 3-digit voltmeter is included standard on your 3000T X-Series oscilloscope. The voltmeter operates through the same probes as the oscilloscope channels. However, the DVM measurements are made independently from the oscilloscope acquisition and triggering system so you can make both the DVM and triggered oscilloscope waveform captures with the same connection. The voltmeter results are always displayed, keeping these quick characterization measurements at your fingertips.

Figure 26. DVM and counter takes advantage of separate signal paths to provide measurements without a trigger, while still using the scope probes.

Integrated frequency measurements: Standard 8-digit counter and totalizer

Traditional oscilloscope counter measurements offer only five or six digits of resolution, which may not be enough for the most critical frequency measurements are being made.

With the 3000T X-Series' standard 8-digit counter, you can see your measurements with the precision you would normally expect only from a standalone counter. Because the integrated counter measures frequencies up to a wide bandwidth of 1.0 GHz, you can use it for many high-frequency applications as well.

The counter's totalizer feature adds another valuable capability to the oscilloscope. It can count the number of events (totalize), and it also can monitor the number of trigger-condition-qualified events. The trigger-qualified events totalizer does not require an actual trigger to occur. It only requires a trigger-satisfying event to take place. In other words, the totalizer can monitor events faster than the trigger rate of a scope, as fast as 25 million events per second (a function of the oscilloscope's holdoff time, which has the minimum of 40 ns). Figures 27 shows example of a totalizer counting the number of CAN-FD CRC delimiter bit error packets that took place in a design.

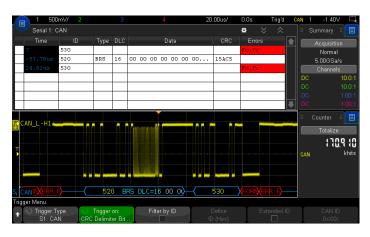


Figure 27. Totalizer counts the number of events. In addition, it can count the number of trigger-condition-qualified events as fast as 25 million events a second.

Solve: Hardware Accelerated Mask/Limit Testing (Option) Makes It Easy to See the Performance of your Device

Whether you are performing pass/fail tests to specified standards in manufacturing or testing for infrequent signal anomalies, mask/limit testing can be a valuable productivity tool (DSOX3MASK). The 3000T X-Series features powerful hardware-based mask testing that can perform up to 270,000 tests per second. You can select multiple test criteria, including the ability to run tests for a specific number of acquisitions, a specified time, or until detection of a failure.

See www.keysight.com/find/DSOX3MASK for more information.

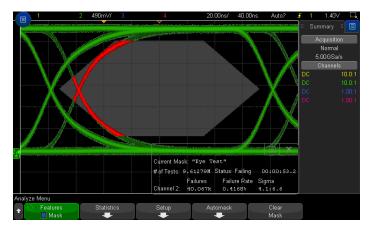


Figure 28. Hardware accelerated mask testing allows testing against a golden waveform or user created mask to find violations. In this example we captured over 5M tests in only 30 seconds.

Solve: Integrated Power Measurements and Analysis (Option) Make Short Work of Power Measurements

When you are working with switching power supplies and power devices, the power measurements application (DSOX3PWR) provides a full suite of power measurements and analysis in the oscilloscope.

Included with the DSOX3PWR is a license for the U1881A PC-based power analysis software package, which provides additional offline measurements and report generation.

See www.keysight.com/find/DSOX3PWR for more information.

In addition there are several power specific probes that make analysis of your power supplies (e.g. switch mode power supplies) and power consuming devices (e.g. batteries) easy.

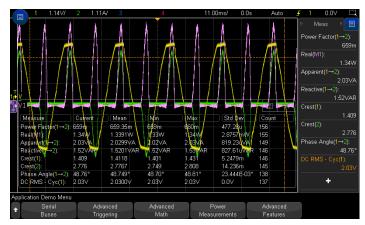


Figure 29a. Integrated power measurements make quick work of analyzing power producing and power consuming devices.

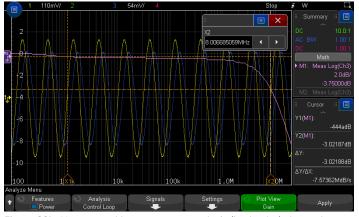


Figure 29b. New control loop response analysis (bode plot) shows the gain/phase plot over frequency sweep.

Solve: Innovative Power Rail Probe (Option) Allows Enhanced Views

The power rail noise, ripple, and transients measurements can be challenging due to required offset range and mV sensitivity. With its \pm 24 V offset range, ultra-low noise 1:1 attenuation ratio, and 2-GHz bandwidth, the N7020A power rail probe is for users making critical power integrity measurements that need mV sensitivity on their DC power rails.

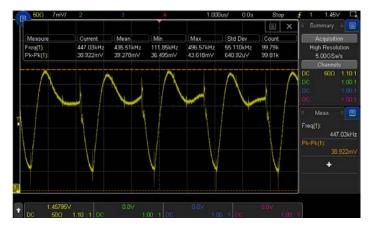


Figure 30a. 3000T X-Series and N7020A acquire not only the power rail ripples but the high frequency transients as well.

Figure 30b. N7020A Power Rail Probe.

Solve: Video Analysis (Option)

Whether you are debugging consumer electronics with HDTV or characterizing a design, the HDTV measurement application (DSOX3VID) provides support for a variety of HDTV standards for triggering and analysis.

See www.keysight.com/find/DSOX3VID for more information.

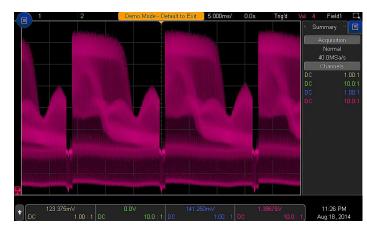


Figure 31.

While the "Touch, Discover, Solve" elements of the scope highlight the key features that will make it easy to debug and troubleshoot your device, there are other features that you may also want to consider when choosing your next oscilloscope.

Total cost of ownership

The 3000T X-Series offers an extremely low cost of ownership. Between an industry leading mean time between failure (MTBF) of over 250,000 hours and a market-leading calibration period of 3 years, you can rest assured that your investment in a 3000T X-Series will be protected for years to come. In addition, because needs change over time, you can purchase just what you need today and then upgrade the scope's bandwidth or measurement application easily over time as your projects evolve.

Educator and training kit

Have new hires that need to quickly become familiar with the scope? Or are you a professor that wants to teach your students what an oscilloscope is and how to perform basic measurements? The Educator's Oscilloscope Training Kit makes that easy. It includes training tools created specifically for electrical engineering and physics undergraduate students and professors. It contains an array of built-in training signals, a comprehensive oscilloscope lab guide and tutorial written specifically for the undergraduate student and an oscilloscope fundamentals PowerPoint slide set for professors and lab assistants. The built-in training signals are included standard on the oscilloscope, while the lab guide and slide set are available to download at www.keysight.com/find/dsoxedk.

Built-in features to help the infrequent user

In addition to the educator's training kit, the oscilloscope includes a localized front panel and GUI available in 15 languages, along with an integrated (and localized) help system. Just hold any hard key or soft panel button and a brief overview will appear that explains how to use that feature.

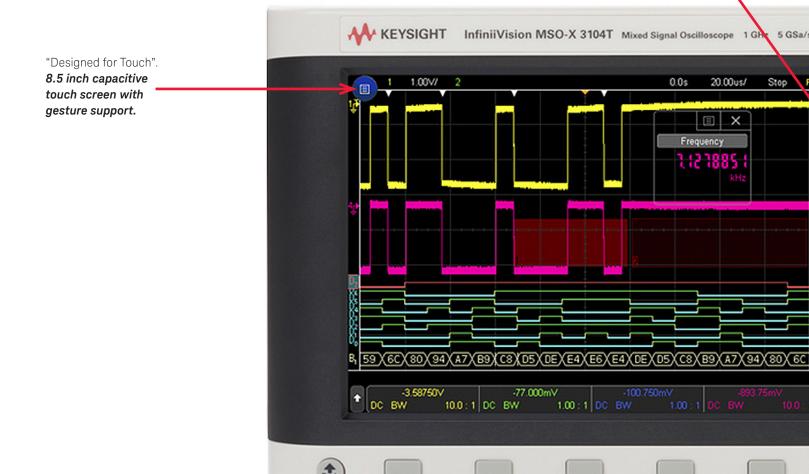
30-day trial license

The 3000T X-Series comes with a one-time 30-day, all optional-features trial license. You can choose to start the 30-day trial at any time. In addition you can redeem individual optional feature 30-day trial licenses at any time by visiting

www.keysight.com/find/30daytrial. This enables you to receive in effect 60 days of trial license of each optional feature.

Next generation probing

All 3000T X-Series come standard with a newly designed, very robust 500 MHz 10:1 passive probe per channel. In addition, MSOs include a newly designed cable with a flexible cable management system that makes probing with the 16-digital channels easy.



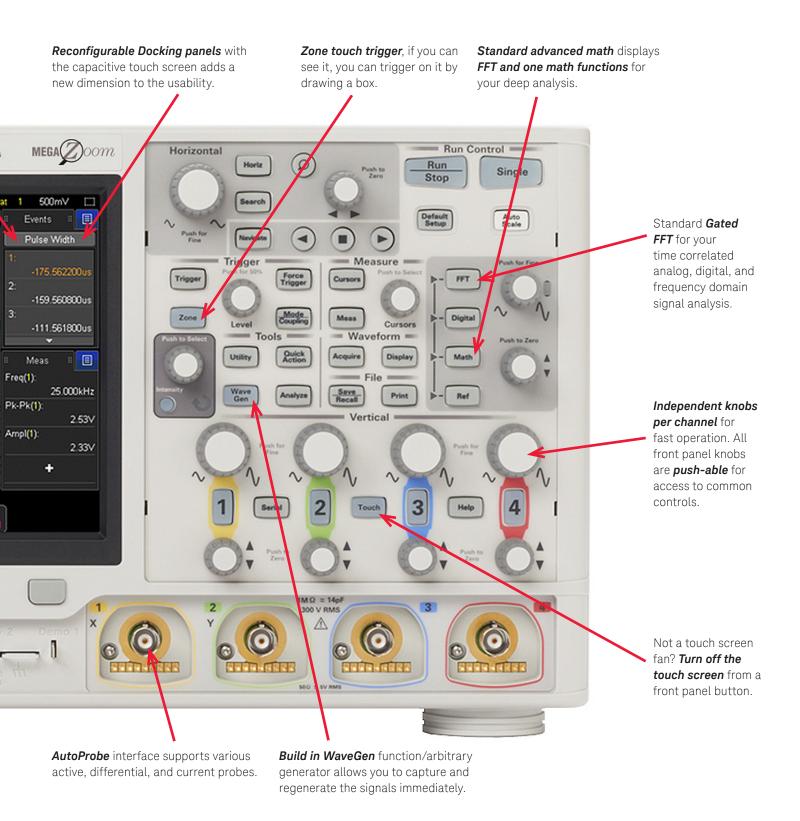
LOCALIZED GUI AND FRONT PANEL OPTIONS

The 3000T X-Series supports 15 different languages:

- English
- Japanese
- Simplified Chinese
- Traditional Chinese
- Thai
- Korean
- German
- French
- SpanishRussian
- Portuguese
- Italian
- Polish
- Czech
- Turkish

7-in-1 instruments helps you solve your problems: oscilloscope channels digital channels, frequency response analysis, serial protocol analysis, WaveGen, DVM, and 8-digit counter-totalizer. **Fully upgradeable** including bandwidth.

Uncompromised 1,000,000 waveform per second update rate minimize the dead-time for maximum probability of capturing infrequent events and anomalies.


Built-in features to help the infrequent user - **GUI available in 15 languages.**

Display up to **8 measurements** simultaneously, without compromising other key info. 38 automatic measurements. **Gated by cursors** supported.

Integrated DVM and 8-digit counter with totalizer. Wide coverage of application and serial protocol solutions including CAN-FD and SENT trigger and decode.

Both *USB keyboard and mouse* are supported in 3000T X-Series for additional ease of use.

Standard segment memory with event lister powered by **MegaZoom IV** smart memory technology intelligent capture of just the signals of interest.

Configuration

Step 1.

Choose your bandwidth and number of channels.

3000 X-Series specification overview											
		3012T	3014T	3022T	3024T	3032T	3034T	3052T	3054T	3102T	3104T
Bandwidth (-3 dB)		100 MHz		200 MHz		350 MHz		500 MHz		1 GHz	
Calculated rise time	(10 to 90%)	≤ 3.5 ns		≤ 1.75 ns		≤1 ns		≤ 700 ps		≤ 450 ps	
Input channels	DSOX	2	4	2	4	2	4	2	4	2	4
	MSOX	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16

For example, if you chose 1 GHz, 4+16 channels, the model number will be MSOX3104T.

Step 2.

Tailor your oscilloscope with integrated capabilities and measurement applications to save time and money. After purchase upgrade model numbers are listed below (values in parentheses are factory-installed option numbers).

Description	Model number
Oscilloscope features	
MSO upgrade	DSOXT3MSO ¹
Serial protocols	
Embedded serial triggering and analysis (I ² C, SPI)	DSOX3EMBD
Computer serial triggering and analysis (RS232/UART)	DSOX3COMP
Sensor triggering and analysis (SENT)	DSOXT3SENSOR ¹
Automotive serial triggering and analysis (CAN/CAN-FD (CAN-FD ISO)/CAN-dbc/LIN/LIN symbolic)	DSOXT3AUTO ¹
CXPI serial triggering and analysis	DSOXT3CXPI
FlexRay serial triggering and analysis	DSOX3FLEX
Audio serial triggering and analysis (I ² S)	DSOX3AUDIO
MIL-STD 1553 and ARINC 429 serial triggering and analysis	DSOX3AERO
USB-PD serial triggering and analysis	DSOXT3UPD DSOXT3UPD
User-definable Manchester/NRZ	DSOXT3NRZ
Measurement applications	
WaveGen 20 MHz arbitary/function generator	DSOX3WAVEGEN
Power analysis application	DSOX3PWR
Frequency Response Analysis (FRA)	DSOXT3FRA
Near field communication testing	DSOXT3NFC
Mask limit testing	DSOX3MASK
Enhanced video/TV application package	DSOX3VID
Productivity tools	
Infiniium Offline oscilloscope analysis software	N8900A
User-defined Application (UDA) software	N5467B/C
BenchVue oscilloscope application	BV0004B
Vector signal analyzer software	89601B (version 20.20 and higher)
Benchlink waveform builder pro and basic	33503A
Application bundle	
	DSOXT3APPBNDL ¹ (include DSOX3AERO, DSOX3AUDIO, DSOXT3AUTO, DSOX3COMP, DSOX3EMBD, DSOX3FLEX, DSOX3MASK, DSOX3PWR, DSOXT3SENSOR, DSOX3VID, DSOX3WAVEGEN, DSOXT3NFC, DSOXT3CXPI, DSOXT3NRZ, DSOXT3FRA)

 $^{1. \}quad \text{These options are compatible with the 3000T X-Series, but are not compatible with the 3000A X-Series.}\\$

Configuration (Continued)

Step 3.

Choose your probes.

For a complete list of compatible probes, visit www.keysight.com/find/scope_probes. In general, the 3000T X-Series supports up to two active probes simultaneously with some exceptions. Contact Keysight for more detail.

Probes		
N2843A	Passive probe 500 MHz, 10:1, 1 M Ω , 11 pF	Standard (1 per channel)
N2756A	16 digital channel MSO cable	Standard on MSOX models & DSOXT3MSO
N2870A	Passive probe 35 MHz, 1:1, 1 M Ω	Optional
10076C	Passive probe 500 MHz 100:1 attenuation (4 kV)	Optional
N2804A	300 MHz 100:1 differential probe, 4 MΩ, 4 pF, ± 300 V DC+peak AC	Optional
N2805A	200 MHz 100:1 differential probe, 4 M Ω , 4 pF, \pm 100 V, 5 m cable	Optional
N2790A	100 MHz 50:1/500:1 high voltage differential probe, 8 M Ω , 3.5 pF, \pm 1,400 V	Optional
N2795A	Active single-ended probe 1 GHz 1 pF 1 MΩ with AutoProbe	Optional
N2797A	Active single-ended probe 1.5 GHz extreme temperature	Optional
N2750A	InfiniiMode differential probe 1.5 GHz 700 fF 200 kΩ with AutoProbe	Optional
N2790A	Differential active probe 100 MHz, ± 1.4 kV with auto probe	Optional
N2791A	Differential active probe 25 MHz, ± 700 V	Optional
N2818A	200 MHz 10:1 differential probe with AutoProbe	Optional
N2819A	800 MHz 10:1 differential probe with AutoProbe	Optional
1147B	AC/DC current probe 50 MHz 15 A with auto probe	Optional
N2893A	AC/DC current probe 100 MHz 15 A with auto probe	Optional
N2820A	2-channel high-sensitivity current probe 50 μA to 5 A	Optional
N2821A	1-channel high-sensitivity current probe 50 μA to 5 A	Optional
N7020A	Power rail probe 2 GHz, 1:1, \pm 24 V offset range at 50 Ω	Optional
N7040A	23 MHz, 3 kA, AC current probe	Optional
N7041A	30 MHz, 600 A, AC current probe	Optional
N7042A	30 MHz, 300 A, AC current probe	Optional
N7026A	AC/DC high-sensitivity current probe 150 MHz, 40 Apk with AutoProbe interface	Optional

Step 4.

Choose your accessories.

Recommended acc	Recommended accessories						
DSOXLAN	LAN/VGA connection module	Optional					
DSOXGPIB	GPIB connection module	Optional					
N2747A	Front panel cover	Optional					
N6456A	Rack mount kit Optional						
N6457A	Soft carrying case with front panel cover	Optional					
Hard transit case	CaseCruzer 3F1112-1510J (available from http://www.casecruzer.com/)	Optional					

Step 5.

Calibration plans.

Calibration and warranties							
D/MSOX3000T-A6J	ANSI Z540-1-1994 calibration	Optional					
D/MSOX3000T-AMG	ISO17025 compliant calibration with accreditation	Optional					

Performance Characteristics

DSO and MSO 3000 X-Series oscilloscopes

3000T X-Series specification of	verview											
		3012T	3014T	3022T	3024T	3032T	3034T	3052T	3054T	3102T	3104T	
Bandwidth 1 (-3 dB)		100 MHz		200 MHz		350 MHz		500 MHz		1 GHz		
Calculated rise time (10 to 90%)		≤ 3.5 ns		≤ 1.75 ns		≤1 ns		≤ 700 ps		≤ 450 ps		
Input channels	DSOX	2	4	2	4	2	4	2	4	2	4	
	MSOX	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	2 + 16	4 + 16	
Maximum sample rate				ls, 2.5 GSa/s								
Maximum memory depth		Standard 4 Mpts, Standard segmented memory										
Display size and type				touch gesture		play						
Waveform update rate		> 1,000,0	00 wavefo	rms per secor	nd							
Vertical system analog channe												
Hardware bandwidth limits		proximately	20 MHz (s	electable)								
Input coupling		, DC										
Input impedance				4 pF), 50 Ω ±								
Input sensitivity range				dels: 1 mV/div								
				to 5 V/div ² (1			50 Ω)					
Vertical resolution	8 b	its (measur	ement res	olution is 12 b	its with aver	aging)						
Maximum input voltage		135 Vrms; 190 Vpk										
	Pro	Probing technology allows testing of higher voltages. For example, the included N2843A 10:1 probe supports										
		testing up to 300Vrms										
	Us	Use this instrument only for measurements within its specified measurement category (not rated for CAT II, III, IV).										
		transient o										
DC vertical accuracy	± [l	DC vertical (gain accur	acy + DC verti	ical offset ac	curacy + 0.25	5% full scal	e] ²				
DC vertical gain accuracy ¹		2.0% full sca										
DC vertical offset accuracy				offset setting								
Channel-to-channel isolation	> 1	00:1 from D	C to maxii	mum specified	d bandwidth	of each mode	l (measure	d with same	V/div and	coupling o	n	
	cha	annels)										
Offset range	± 2	± 2 V (1 mV/div to 200 mV/div)										
	± 5	± 50 V (> 200 mV/div to 5 V/div)										
Vertical system digital channe	ls											
Digital input channels	16	digital (D0 t	o D15. po	d 1: D7 ~ D0, F	Pod 2: D15 ~	D8)						
Thresholds	Th	reshold per	pod									
Threshold selections	TT	L (+1.4 V), 5	V CMOS (+2.5 V), ECL (-	-1.3 V), user-	defined (seled	ctable by p	od)				
User-defined threshold range	± 8	± 8.0 V in 10 mV steps										
Maximum input voltage	± 4	iO V peak CA	AT I									
Threshold accuracy ¹	± (100 mV + 39	% of thresh	nold setting)								
Maximum input dynamic range	± 1	0 V about th	nreshold	-								
Minimum voltage swing	50	0 mVpp										
Input impedance	10	0 kΩ ± 2% a	t probe tip)								
Input capacitance	~8											
Vertical resolution	1 b											

Page 28 Find us at www.keysight.com

Denotes warranted specifications, all others are typical.
 Specifications are valid after a 30-minute warm-up period and ± 10 °C from firmware calibration temperature. 1 mV/div and 2 mV/div are a magnification of 4 mV/div setting. For vertical accuracy calculations, use full scale of 32 mV for 1 mV div and 2 mV/div sensitivity setting.

Horizontal system a	analog channels										
		3012T	3014T	3022T	3024T	3032T	3034T	3052T	3054T		3104A
Time base range			o 50 s/div		2 ns/div to			1 1107 011	to 50 s/div		div to 50 s/di
Time base accuracy	1				ır: ± 0.5 ppm,	2nd year: :	± 0.7 ppm, 5	years: ± 1	.5 ppm, 10 y	/ears: ± 2.0	ppm)
Time base delay	Pre-trigger	Greater o	f 1 screen	width or 250	μs						
time range	Post-trigger	1 s to 500) s								
Channel-to-channel	l deskew range	± 100 ns									
Δ Time accuracy (us	sing cursors)	± (time ba	ase acc. x r	eading) ± (0.	0016 x scree	n width) ± 1	100 ps				
Modes		Main, zoo	m, roll, XY								
XY		On chann	els 1 and 2	only. Z Blan	king on Ext T	rigger Inpu	t, 1.4 V thre	shold			
		Bandwidt	h: Maximu	m bandwidth	n. Phase erro	at 1 MHz:	< 0.5 degre	е			
Horizontal system (digital channels										
Minimum detectable	e pulse width	5 ns									
Channel-to-channel	l skew	2 ns (typi	cal); 3 ns (r	naximum)							
Acquisition system											
Maximum analog ch	annels sample	5 GSa/s half channel interleaved, 2.5 GSa/s all channel									
rate											
Maximum analog ch	annels record	4 Mpts ha	4 Mpts half channel interleaved, 2 Mpts all channel								
length											
Maximum digital cha rate	annels sample	1.25 GSa/s all pods									
Maximum digital cha length	annels record	2 Mpts (w	ith digital (channels onl	y)						
Acquisition mode	Normal	Default m	ode								
	Peak detect	Capture g	litches as	narrow as 25	0 ps at all tir	ne base se	ttings				
	Averaging	Selectabl	e from 2, 4	, 8, 16, 64,	to 65,536						
	Real time boxcar averaging reduces random noise and effectively increases vertical resolution 12 bits of resolution										
	resolution	when \geq 10 µs/div at 5 GSa/s or \geq 20-µs/div at 2.5 GSa/s									
	Segmented	Segmente	ed memory	optimizes a	vailable mem	ory for data	a streams th	at have lo	ng dead time	es between	activity.
		Maximum	segments	= 1000. Re-	arm time = 1	μs (minimu	ım time bet	ween trigg	er events)		
Time mode	Normal	Default m	ode								
	Roll	Displays t	he wavefor	m moving a	cross the scr	een from ri	ght to left. A	vailable at	the time ba	se 50 ms/c	liv or slower
	XY				lisplay. Time						

^{1.} Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period and ± 10 °C from firmware calibration temperature.

Trigger system	
Trigger sources	Analog channel (1 \sim 4), digital channel (D0 \sim D15), line, external, WaveGen (1 or mod) (FM/FSK)
Trigger modes	Normal (triggered): Requires trigger event for scope to trigger
	Auto: Triggers automatically in absence of trigger event
	Single: Triggers only once on a trigger event, press [Single] again for scope to find another trigger event, or
	press [Run] to trigger continuously in either Auto or Normal mode
	Force: front panel button that forces a trigger
Trigger coupling	DC: DC coupled trigger
	AC: AC coupled trigger, cutoff frequency: < 10 Hz (internal); <50 Hz (external)
	HF reject: High frequency reject, cutoff frequency ~ 50 kHz
	LF reject: Low frequency reject, cutoff frequency ~ 50 kHz
	Noise reject: Selectable OFF or ON, decreases sensitivity 2x
Trigger holdoff range	40 ns to 10.00 s
Trigger sensitivity	
Internal ¹	< 10 mV/div: Greater of 1 div or 5 mV; ≥ 10 mV/div: 0.6 div
External ¹	200 mVpp from DC to 100 MHz
	350 mVpp 100 MHz to 200 MHz
Trigger level range	
Any channel	± 6 div from center screen
External	± 8 V
Trigger type selections	
Zone (HW zone qualifier)	Trigger on user-defined zones drawn on the display. Applies to one analog channel at a time. Specify zones as
·	either "must intersect" or "must not intersect." Up to two zones. > 200,000 scans/sec update rate
	Supported modes: normal, peak detect, high resolution
	Also works simultaneously with the serial trigger and mask/limit test
Edge	Trigger on a rising, falling, alternating or either edge of any source
Edge then edge (B trigger)	Arm on a selected edge, wait a specified time, then trigger on a specified count of another selected edge
Pulse width	Trigger on a pulse on a selected channel, whose time duration is less than a value, greater than a value, or inside
	a time range
	Minimum duration setting: 2 ns (500 MHz, 1 GHz), 4 ns (350 MHz), 6 ns (200 MHz), 10 ns (100 MHz)
	Maximum duration setting: 10 s
	Range minimum: 10 ns
Runt	Trigger on a position runt pulse that fails to exceed a high level threshold. Trigger on a negative runt pulse that
	fails to exceed a low level threshold. Trigger on either polarity runt pulse based on two threshold settings. Runt
	triggering can also be time-qualified ($<$ or $>$) with a minimum time setting of 2 \sim 10 ns and maximum timesetting
	of 10 s
	Minimum time setting: 2 ns (500 MHz, 1 GHz), 4 ns (350 MHz), 6 ns (200 MHz)
	10 ns (100 MHz)
Setup and hold	Trigger and clock/data setup and/or hold time violation. Setup time can be set from -7 to 10 s. Hold time can be
	set from 0 s to 10 ns
Rise/fall time	Trigger on rise-time or fall-time edge speed violations (< or >) based on user-selectable threshold
	Select from (< or >) and time settings range between
	Minimum: 1 ns (500 MHz, 1 GHz), 2 ns (350 MHz), 3 ns (200 MHz), 5 ns (100 MHz)
	Maximum: 10 s

^{1.} Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period and ±10 °C from firmware calibration temperature.

Trigger type selections	Tripper on the Nth (1 to CFFOF) adap of a pulse house Consider the time (10 and to 10 a) for the 1
N th edge burst	Trigger on the Nth (1 to 65535) edge of a pulse burst. Specify idle time (10 ns to 10 s) for framing
Pattern	Trigger when a specified pattern of high, low, and don't care levels on any combination of analog, digital, or
	trigger channels is [entered exited]. Pattern must have stabilized for a minimum of 2 ns to qualify as a valid
	trigger condition
	Minimum duration setting: 2 ns (500 MHz, 1 GHz), 4 ns (350 MHz), 6 ns (200 MHz), 10 ns (100 MHz)
	Maximum duration setting: 10 s
	Range minimum: 10 ns
Or	Trigger on any selected edge across multiple analog or digital channels
Video	Trigger on all lines or individual lines, odd/even or all fields from composite video, or broadcast standards
	(NTSC, PAL, SECAM, PAM-M)
Enhanced Video (optional)	Trigger on lines and fields of enhanced and HDTV standards (480p/60, 567p/50, 720p/50, 720p/60, 1080p/24
	1080p/25, 1080p/30, 1080p/50, 1080p/60, 1080i/50, 1080i/60)
USB	Trigger on start of packet, end of packet, reset complete, enter suspend, or exit suspend. Support USB
005	low-speed and full-speed
I ² C (optional)	Trigger at a start/stop condition or user defined frame with address and/or data values. Also trigger on missing
1 C (optional)	acknowledge, address with no accq, restart, EEPROM read, and 10-bit write
ODI / 12 1/	
SPI (optional)	Trigger on SPI (Serial Peripherial Interface) data pattern during a specific framing period. Supports positive
	and negative Chip Select framing as well as clock Idle framing and user-specified number of bits per frame.
	Supports MOSI and MISO data
RS-232/422/485/UART (optional)	Trigger on Rx or Tx start bit, stop bit or data content or parity error
I ² S (optional)	Trigger on 2's complement data of audio left channel or right channel (=, \neq , <, >, < <, < >, increasing value, or
	decreasing value)
CAN (optional)	Trigger on CAN (controller area network) version 2.0A,2.0B, and CAN-FD (Flexible Data-rate) signals. Trigger on
	the start of frame (SOF), the end of frame (EOF), data frame ID, data frame ID and data (non-FD), data frame ID
	and data (FD), remote frame ID, remote or data frame ID, error frame, acknowledge error, from error, stuff error,
	CRC error, spec error (ack or form or stuff or CRC), all errors, BRS Bit (FD), CRC delimiter bit (FD), ESI bit active
	(FD), ESI bit passive (FD), overload frame., message, message and signal (non-FD), message and signal (FD, firs
	8 bytes only)
LIN (optional)	Trigger on LIN (Local Interconnect Network) sync break, sync frame ID, or frame ID and data, parity error,
	checksum error, frame (symbolic), frame and signal (symbolic)
CXPI (optional)	Trigger on the start of frame (SOF), the end of frame (EOF), PTYPE, frame ID, data and info frame ID, data and
(info frame ID (long frame), CRC field error, parity error, inter-byte space error, inter-frame space error, framing
	error, data length error, sample error, all errors, sleep frame, wakeup pulse
FlexRay (optional)	Trigger on frame ID, frame type (sync, start-up, null, normal), cycle-repetitive, cycle-base, and errors.
MIL-STD 1553 (optional)	Trigger on MIL-STD 1553 signals based on word type (Data or Command/Status), Remote Terminal Address,
WIL-31D 1333 (optional)	data, and errors (parity, sync, Manchester encoding)
ARINC 429 (optional)	Trigger on ARINC429 data. Trigger on word start/stop, label, label + bits, label range, error conditions (parity,
AKING 429 (optional)	
OFNIT (+:I)	word, gap, word or gap, all), all bits (eye), all 0 bits, all 1 bits
SENT (optional)	Trigger on SENT bus. start of fast channel message, start of slow channel message, fast channel SC and data,
	slow channel message ID, slow channel message ID and data, tolerance violation, fast channel CRC error, slow
	channel CRC error, all CRC errors, pulse period error, successive sync pulses error (1/64)
User-definable Manchester/NRZ	Trigger on start-of-frame (SOF), bus value, and Manchester errors
(optional)	
USB PD (optional)	Trigger on preamble, EDP, ordered sets, preamble errors, CRC errors, header content (control messages, data
	messages, extended messages and value in HEX)

Waveform measur	rements					
Cursors ²		ursor accuracy: ± [DC vertical gain accuracy + DC vertical offset accuracy + 0.25% full scale]				
04.00.0		Dual cursor accuracy: ± [DC vertical gain accuracy + 0.5% full scale] ¹				
		Units: Seconds(s), Hz (1/s), phase (degrees), ratio (%)				
Automatic measure		Measurements continuously updated with statistics. Cursors track last selected measurement. Select up to eight				
/ atomatic measure		measurements continuously updated with statistics. Cursors track last selected measurement. Select up to eight measurements from the list below:				
		Snapshot All: Measure all single waveform measurements (31)				
		Voltage: Peak-to-peak, maximum, minimum, amplitude, top, base, overshoot, pre-shoot, average- N cycles, average- full				
	screen, [screen, DC RMS- N cycles, DC RMS- full screen, AC RMS- N cycles, AC RMS- full screen (std deviation), ratio- N cycle, ratio- full screen Time: Period, frequency, counter, + width, - width, burst width, +duty cycle, -duty cycle, bit rate, rise time, fall time, delay, phase, X at min Y, X at max Y				
		ositive pulse count, negative pulse count, rising edge count, falling edge count				
Automatic measure		Mixed: Area- N cycles, area- full screen Available via BenchVue				
logging	omoni Avandult	ה אות שפווטוויעט				
Counter	Ruilt in f	Duilt in frequency counter				
Counter		Built-in frequency counter Source: On any analog or digital channel				
		Resolution: 5 digits				
		Maximum frequency: Bandwidth of scope				
Waveform math	Maximui	in requericy. Dandwidth of Scope				
Number of math fu	nationa	Two displays FFT and and math simultaneously. Can be acceeded				
Arithmetic	IICUOIIS	Two, displays FFT and one math simultaneously. Can be cascaded				
Anumeuc		Add, subtract, multiply, divide, differentiate, integrate, FFT, Ax + B, squared, square root, absolute value, common logarithm, natural logarithm, exponential, base 10 exponential, low pass filter, high pass filter, averaged value, smoothing, envelope, magnify, max hold, min hold, measurement trend, chart logic bus (Timing or State)				
Enhanced FFT	Record size	Up to 64 kpts resolution				
Zimanood i i i	Window types	Hanning, Flat Top, Rectangular, Blackman-Harris, Bartlett				
	Time gated FFT	Gate the time range of data for FFT analysis in the zoom view. For time and frequency domain correlated analysis.				
	Waveforms	FFT, max hold, min hold, average				
	Peak search	Max 11 peaks, threshold and excursion control				
Search, navigate,		max 11 peaks, threshold and excursion control				
Type	una dotoi	Edge, pulse width, rise/fall, runt, frequency peak, serial bus 1, serial bus 2				
Сору		Copy to trigger, copy from trigger				
Frequency peak	Source	Math functions				
rrequeries peak	Max # of peaks	11				
	Control	Results order in frequency or amplitude				
Result display	Ooner or	Event lister or navigation. Manual or auto scroll via navigation or touch event lister entry to jump to a specific e				
Display characteri	istics	g				
Display		8.5-inch capacitive touch/gesture enabled TFT LCD				
Resolution		800 (H) x 480 (V) pixel format (screen area)				
Graticules		8 vertical divisions by 10 horizontal divisions with intensity controls				
Format		YT, XY, and Roll				
Maximum waveform update rate		> 1,000,000 wfms/s				
		Off, infinite, variable persistence (100 ms to 60 s)				
Persistence		Off, infinite, variable persistence (100 ms to 60 s)				

1. Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period and \pm 10 °C from firmware calibration temperature.

^{2. 1} mV/div and 2 mV/div is a magnification of 4 mV/div setting. For vertical accuracy calculations, use full scale of 32 mV for 1 mV/div and 2 mV/div sensitivity setting.

WaveGen out	Front-panel BNC connector		
Waveforms	Sine, Square, Ramp, Pulse, DC, Noise, Sine Cardinal (Sinc), Exponential Rise, Exponential Fall, Cardiac, Gaussial		
	Pulse, and Arbitrary		
Modulation	Modulation types: AM, FM, FSK		
	Carrier waveforms: sine, ramp, sine cardinal, exponential rise, exponential fall, and cardiac		
	Modulation source: internal (no external modulation capability)		
	AM:		
	Modulation: sine, square, ramp		
	Modulation frequency: 1 Hz to 20 kHz		
	Depth: 0% to 100%		
	FM:		
	Modulation: sine, square, ramp		
	Modulation frequency: 1 Hz to 20 kHz		
	Minimum carrier frequency: 10 Hz		
	Deviation: 1 Hz to carrier frequency or (2e12 / carrier frequency), whichever is smaller		
	FSK:		
	Modulation: 50% duty cycle square wave		
	FSK rate: 1 Hz to 20 kHz		
	Hop frequency: 2 x FSK rate to 10 MHz		
Sine	Frequency range: 0.1 Hz to 20 MHz		
	Amplitude flatness: ± 0.5 dB (relative to 1 kHz)		
	Harmonic distortion: -40 dBc		
	Spurious (non harmonics): -40 dBc		
	Total harmonic distortion: 1%		
	SNR (50 Ω load, 500 MHz BW): 40 dB (Vpp $>$ = 0.1 V); 30 dB (Vpp $<$ 0.1V)		
Square wave /pulse	Frequency range: 0.1 Hz to 10 MHz		
	Duty cycle: 20 to 80%		
	Duty cycle resolution: Larger of 1% or 10 ns		
	Pulse width: 20 ns minimum		
	Rise/fall time: 18 ns (10 to 90%)		
	Pulse width resolution: 10 ns or 5 digits, whichever is larger		
	Overshoot: < 2%		
	Asymmetry (at 50% DC): ± 1% ± 5 ns		
	Jitter (TIE RMS): 500 ps		
Ramp/triangle wave	Frequency range: 0.1 Hz to 200 kHz		
1 0	Linearity: 1%		
	Variable symmetry: 0 to 100%		
	Symmetry resolution: 1%		
Noise	Bandwidth: 20 MHz typical		
Sine Cardinal (Sinc)	Frequency range: 0.1 Hz to 1.0 MHz		
Exponential Rise/Fall	Frequency range: 0.1 Hz to 5.0 MHz		
Cardiac	Frequency range: 0.1 Hz to 200.0 kHz		
Gaussian Pulse	Frequency range: 0.1 Hz to 5.0 MHz		
Arbitrary	Waveform length: 1 to 8k points		
5 ,	Amplitude resolution: 10 bits (including sign bit) 1		
	Repetition rate: 0.1 Hz to 12 MHz		
	Sample rate: 100 MSa/s		
	Filter bandwidth: 20 MHz		

^{1.} Full resolution is not available at output due to internal attenuator stepping.

Frequency		y waveform generator (specifications are typical) (Continued) Sine wave and ramp accuracy:					
rrequency		130 ppm (frequency < 10 kHz)					
		50 ppm (frequency > 10 kHz)					
		Square wave and pulse accuracy: [50+frequency/200] ppm (frequency < 25 kHz) 50 ppm (frequency ≥ 25 kHz)					
					Resolution: 0.1 Hz or 4 digits, whichever is larger		
					Amplitude		Range:
		Amputuue		20 mVpp to 5 Vpp into Hi-Z ¹			
		10 mVpp to 2.5 Vpp into 50 Ω ¹					
		Resolution: 100 μV or 3 digits, whichever is higher					
		Accuracy: 2% (frequency = 1 kHz)					
DC offset		Range:					
		± 2.5 V into Hi-Z ¹					
		$\pm 1.25 \text{ V into } 50 \Omega^{1}$					
		Resolution: 100 μV or 3 digits, whichever is higher					
		Accuracy (waveform modes): ± 1.5% of offset setting ± 1% of amplitude ± 1 mV					
		Accuracy (DC mode): ± 1.5% of offset setting ± 3 mV					
Trigger output		Trigger output available on Trig out BNC					
Main output		Impedance: 50 Ω typical					
		Isolation: Not available, main output BNC is grounded					
		Protection: Overload automatically disables output					
Output mode		Normal					
		Single-shot (arbitrary, sine, ramp, sine cardinal, exp rise/fall, cardiac, Gaussian pulse)					
Digital voltmete	er (Specifications are	typical)					
Functions		ACrms, DC, DCrms					
Resolution		ACV/DCV: 3 digits					
Measuring rate		100 times/second					
Autoranging		Automatic adjustment of vertical amplification to maximize the dynamic range of measurements					
Range meter		Graphical display of most recent measurement, plus extrema over the previous 3 seconds					
Precision count	er/totalizer (Specifica						
Counter	Source	Any analog channel or trigger qualified event					
	Resolution	8 digits (8 digits for trigger qualified event)					
	Max frequency	1 GHz					
	Trig qual events	1/(trigger hold off time) for trigger qualified events (max 25 MHz, minimum dead time of 40 ns)					
Measurement		Frequency, period, totalize					
Totalizer	Counter size	64 bit totalizing counter					
	Edge	Rise or fall					
	Gating	Positive or negative level. Select from analog channels except the source					

^{1.} Gaussian Pulse: 4 Vpp maximum into Hi-Z; 2 Vpp maximum into 50 $\Omega.\,$

Connectivity			
Standard ports	One USB 2.0 hi-speed device port on rear panel. Supports USBTMC protocol		
	Two USB 2.0 hi-speed host ports, front and rear panel		
	Supports memory devices, printers and keyboards		
Optional ports	GPIB, LAN (10/100Base-T), WVGA video out		
Trigger out	BNC connector on the rear panel. Supported modes: triggers, mask, and waveform generator sync pulse		
General and environmental chara	cteristics		
Power line consumption	Max 100 W		
Power voltage range	100 to 120 V, 50/60/400 Hz; 100 to 240 V, 50/60 Hz		
Environmental rating	5 to 55°C, 4000 m max		
	Maximum Relative Humidity (non-condensing): 95%RH up to 40°C, decreases linearly to 45%RH at 55°C		
	From 40°C to 55°C, the maximum % Relative Humidity follows the line of constant dew point		
Electromagnetic compatibility	Meets EMC directive (2004/108/EC), meets or exceeds IEC 61326-1:2005/EN		
	61326-1:2006 Group 1 Class A requirement		
	CISPR 11/EN 55011		
	IEC 61000-4-2/EN 61000-4-2		
	IEC 61000-4-3/EN 61000-4-3		
	IEC 61000-4-4/EN 61000-4-4		
	IEC 61000-4-5/EN 61000-4-5		
	IEC 61000-4-6/EN 61000-4-6		
	IEC 61000-4-11/EN 61000-4-11		
	Canada: ICES-001:2004		
	Australia/New Zealand: AS/NZS		
Safety	ANSI/UL Std. No. 61010-1:2012; CAN/CSA-C22.2 No. 61010-1-12		
	ANSI/UL Std. No. 61010-2-030:2012; CAN/CSA-C22.2 No. 61010-2-030-12		
Vibration	Meets IEC60068-2-6 and MIL-PRF-28800; class 3 random		
Shock	Meets IEC 60068-2-27 and MIL-PRF-28800; class 3 random; (Operating 30 g, ½ sine. 11 ms duration, 3 shocks)		
	axis along major axis, total of 18 shocks		
Dimensions (W x H x D)	381 mm (15 in) x 204 mm (8 in) x 142 mm (5.6 in)		
Weight	Net: 4.0 kg (9.0 lbs), shipping: 4.2 kg (9.2 lbs)		

Nonvolatile storage			
Reference waveform display		Two internal waveforms or USB thumb drive. Displays 1 reference waveform at a time	
Data/file save	Setup/image	Setup (*.scp), 8 or 24-bit Bitmap image (*.bmp), PNG 24-bit image (*.png)	
	Waveform data	CSV data (*.csv), ASCII XY data (*.csv), Binary data (*.bin), Lister data (*.csv), Reference	
		waveform data (*.h5), multi-channel waveform data (*.h5), Arbitrary Waveform data (*.csv)	
	Application data	Mask (*.msk), Power harmonics data (*.csv), USB signal quality (*.html & *.bmp)	
	Analysis results	Cursor data, measurement results, mask test statistics, search, segmented timestamps	
	(*.csv)		
Max USB flash drive size		Supports industry standard flash drives	
Set ups without USB flash drive		10 internal setups	
Set ups with USB flash drive		Limited by size of USB drive	
Included standard with oscilloscope			
Calibration		Certificate of calibration, 3-year calibration interval	
Mean time before failure (MTBF)		> 250,000 hours	
Standard secure erase			
Probes			
N2843A Passive probe 500 MHz 10:1 attenuation 1		1 per channel	
N2756A 16 digital channel MSO cable		1 per scope included on all MSO models and DSOXT3MSO	
Interface and built-in help language s	upport	English, Chinese (simplified), Chinese (traditional), Czech, French, German, Italian, Japanese,	
		Korean, Portuguese, Russian, Spanish, Polish, Thai, Turkish	
Documentation		CD containing localized user's guide, service guide, and programmer's manual	
Localized power cord and overlay			

For MET/CAL procedures, click on the Cal Labs solutions link http://www.callabsolutions.com/products/Keysight/. These procedures are FREE to customers.

Related literature

Publication title	Publication number
Mask/Waveform Limit Testing For InfiniiVision Series Oscilloscopes - Data Sheet	5990-3269EN
Serial Bus Options for InfiniiVision X-Series Oscilloscopes - Data Sheet	5990-6677EN
DSOX3PWR/DSOX4PWR/DSOX6PWR Power Measurement Options - Data Sheet	5990-8869EN
Triggering on Infrequent Anomalies and Complex Signals using Zone Trigger - Application Note	5991-1107EN
InfiniiVision 3000T X-Series versus Danaher-Tektronix MDO3000 Series Oscilloscopes - Competitive Comparison	5992-0116EN
InfiniiVision 3000T X-Series Oscilloscopes - Product Fact Sheet	5992-0150EN
Using an Oscilloscope Time Gated Fast Fourier Transforms for Time Correlated Mixed Domain Analysis - Application Note	5992-0244EN
DSOXT3NFC/DSOX4NFC Automated NFC Test Software, N2116A/N2134A/N2135A Programmable NFC 3-in-1 Antenna -	5992-1593EN
Data Sheet	
DSOXT3FRA/DSOX4FRA/DSOX6FRA Frequency Response Analyzer (FRA) Option - Data Sheet	5992-2209EN

Automotive Software Package

for InfiniiVision X-Series oscilloscopes

The Automotive Software Package for Keysight's InfiniiVision oscilloscopes enables protocol triggering and decode for a broad range of the most common automotive serial buses used today for power train and body control and monitoring. This package also enables other advanced analysis capabilities including eye-diagram mask testing and frequency response analysis to help test and debug automotive electronic systems.

Table of Contents

ntroduction	3
erial Trigger and Decode	5
CAN (2000A and 3000A X-Series models)	5
CAN/CAN FD (3000T, 4000A, 6000A, P9240, and M9240 X-Series models)	6
LIN	7
FlexRay	8
SENT (Single Edge Nibble Transmission)	9
PSI5 (based on User-definable Manchester)	0
User-definable NRZ (non-return to zero)	11
CXPI (Clock Extension Peripheral Interface)	12
dvanced Analysis1	13
Mask Test (pass/fail waveform limit testing)	13
Frequency Response Analysis (Bode gain & phase plots)	4
Advanced Waveform Math (3000A X-Series only)	15
robing Differential Serial Buses1	16
xtreme Temperature Probing1	16
Related Literature1	17
Ordering Information	17
lexible Software Licensing and KeysightCare Software Support Subscriptions1	18

Introduction

The primary reason engineers use oscilloscopes to debug and characterize automotive serial buses, such as CAN, CAN FD, LIN, SENT, PSI5, CXPI and FlexRay, is because of an oscilloscope's inherent ability to characterize the analog quality of these signals. Performing analog characterization using an oscilloscope is often referred to as "physical layer" measurements.

Many of the most popular automotive serial bus protocol decode & triggering capabilities and advanced analysis features are enabled on InfiniiVision X-Series oscilloscope if licensed with the Automotive Software Package. Table 1 lists the specific measurement capabilities that are enabled on each series with the Automotive Package.

Table 1. Automotive Software Packages InfiniiVision Oscilloscopes

InfiniiVision Series:		2000A	3000A	3000T	4000A	6000A	P9240	M9240
Automotive Package Model Number:		D2000AUTA	D3000AUTA	D3000AUTA	D4000AUTA	D6000AUTA	P9240AUTB	M9240AUTB
4.	CAN ¹	✓	✓	✓	✓	✓	✓	✓
ode	CAN FD ¹			✓	✓	✓	✓	✓
Dec	LIN ²	✓	✓	✓	✓	✓	✓	✓
જ	FlexRay		✓	✓	✓	✓		
ge	SENT			✓	✓	✓	✓	✓
Serial Trigger & Decode	PSI5 (User-definable Manchester)			✓	✓	✓	✓	✓
eri	User-definable NRZ			✓	✓	✓	✓	✓
0,	CXPI			✓	✓	✓	✓	✓
pe s	Mask Test ³	✓	✓	✓	✓	✓	✓	✓
Advanced Analysis	Frequency Response Analysis			✓	✓	✓	✓	✓
Ad	Advanced Math	Std	✓	Std	Std	Std	Std	Std

Notes:

- 1. Symbolic decoding supported by importing a .dbc file, except on the 2000A and 3000A Series.
- Symbolic decoding supported by importing a .ldf file, except on the 2000A and 3000A Series.
- 3. CAN, CAN FD, FlexRay, and SENT mask files available for download at no additional charge.

Although there are many oscilloscopes on the market today from multiple vendors that offer automotive-focused options, Keysight's InfiniiVision Series oscilloscopes offer some unique measurement capabilities for debugging and characterizing the physical layer of automotive serial buses including:

- CAN and CAN FD symbolic trigger and decode (based on .dbc file import)
- LIN symbolic trigger and decode (based on .ldf file import)
- CAN eye-diagram mask testing
- CAN FD eye-diagram mask testing
- FlexRay eye-diagram mask testing
- SENT mask pulse-shape physical layer testing
- Dual-bus time-interleaved protocol lister display
- Hardware-based decoding for responsiveness
- Decoding of all frames captured using segmented memory
- Real-time frame/error counter with bus load measurement
- Zone trigger to isolate occurrences of CAN bus arbitration

To learn more about these advanced measurement capabilities, refer to the extensive list of Keysight automotive-focused application notes listed at the end of this document.

Figure 1 shows an example of symbolically decoding the CAN bus with a .dbc file while triggering on occurrences of arbitration with an InfiniiVision oscilloscope's unique zone trigger capability.

Figure 1. Capturing CAN bus arbitration while decoding CAN messages symbolically.

Serial Trigger and Decode

CAN (2000A and 3000A X-Series models)

Table 2: CAN Performance Characteristics (2000A and 3000A X-Series only)

CAN input source	Analog channels 1, 2, 3 or 4			
·	Digital channels D0 to D15 non-differential. (except 2000 X-Series)			
Signal types	Rx, Tx, CAN_L, CAN_H, Diff (L-H), Diff (H-L)			
Baud rates	10 kb/s up to 5 Mb/s			
Triggering	Start-of-frame (SOF)			
	Remote frame ID (RMT)			
	Data frame ID (~RMT)			
	Remote or data frame ID			
	Data frame ID and data			
	Error frame			
	All errors (includes protocol "form" errors that may not generate flagged error frames)			
	Acknowledge errors			
	Overload frames			
	ID length: 11 bits or 29 bits (extended)			
Hardware-based decode	Frame ID (hex digits in yellow)			
	Remote frame (RMT in green)			
	Data length code (DLC in blue)			
	Data bytes (hex digits in white)			
	CRC (hex digits in blue = valid, hex digits in red = error)			
	Error frame (bi-level bus trace and ERR message in red)			
	Form error (bi-level bus trace and "?" in red)			
	Overload frame ("OVRLD" in blue)			
	Idle bus (mid-level bus trace in dark blue)			
	Active bus (bi-level bus trace in dark blue)			
Multi-bus analysis	CAN plus one other serial bus, including another CAN bus. (except 2000 X-Series)			
Totalize function	Total frames, total overload frames, total error frames, bus utilization (bus load)			
Eye-diagram mask testing	Various downloadable mask files available based on differential probing polarity, baud rate and network			
	length			

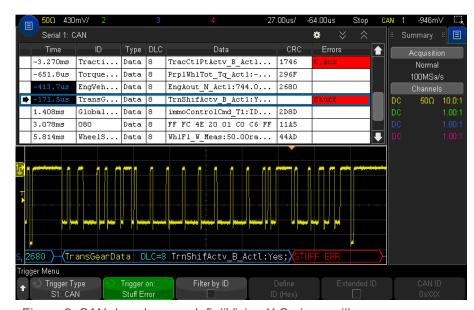


Figure 2. CAN decode on an InfiniiVision X-Series oscilloscope.

CAN/CAN FD (3000T, 4000A, 6000A, P9240, and M9240 X-Series models)

Table 3: CAN/CAN FD Performance Characteristics

CAN input source	Analog channels 1, 2, 3 or 4
	Digital channels D0 to D15 non-differential
Signal types	Rx, Tx, CAN_L, CAN_H, Diff (L-H), Diff (H-L)
Standard baud rates	10 kb/s up to 5 Mb/s
D baud rates	10 kb/s up to 10 Mb/s
riggering	SOF (Start-of-frame)
	EOF (End-of-frame, filtered by ID)
	Data frame ID (11 bits or 29 bits: Extended)
	Data frame ID and data – non FD
	Data frame ID and data - FD
	Remote frame ID (RTR)
	Remote or data frame ID
	Error frame (filtered by ID)
	Acknowledge error (filtered by ID)
	Form error (filtered by ID)
	Stuff error (filtered by ID)
	CRC error (filtered by ID)
	Spec error (includes Ack, Form, Stuff or CRC error; filter by ID)
	All errors (includes any Spec error or Error frame; filtered by ID)
	BRS bit (filtered by ID of FD frames only)
	CRC delimiter bit (filtered by ID of FD frames only)
	ESI bit active (filtered by ID of FD frames only)
	ESI bit passive (filtered by ID of FD frame only)
	Overload frames
Symbolic triggering (based on .dbc file)	Message names
symbolic triggering (based on .dbc lite)	Message and signal values/encoded states (first 8 bytes)
Hardware-based decode	
hardware-based decode	Frame ID (hex digits in yellow)
	Remote frame (RMT in green)
	Data length code (DLC = with decimal digits in blue)
	Data bytes (hex digits in white)
	ESI bit passive (frame type column in lister shaded yellow; FD frames only)
	Error frame (bi-level red bus trace with ERR FRAME in red)
	Stuff bit error (bi-level red bus trace with STUFF ERR in red)
	Form error (bi-level red bus trace with FORM ERR in red)
	Acknowledge error (bi-level red bus trace with ACK ERR in red)
	CRC (hex digits in blue = valid, hex digits in red = error)
	Overload frame ("OVRLD" in blue)
	Idle bus (mid-level dark blue bus trace)
	Active bus (bi-level dark blue bus trace with embedded decode within)
Symbolic decode (based on .dbc file)	Message names (alpha-numeric characters in yellow)
ginbout decode (based on .dbc ille)	Signal names, value/encoded state (first 8 bytes) and units (alpha-numeric characters in white)
Multi-bus analysis	CAN/CAN FD plus one other serial bus, including another CAN/CAN FD bus
Totalize function (real time)	Total frames, total error frames with %, total spec errors, bus load in %
CAN/CAN FD Eye-diagram mask	Various downloadable mask files available based on differential probing polarity, baud rate and network
.ANT.AN FITEVE-Hanram mack	

Table 4: LIN Performance Characteristics

LIN input source	Analog channels 1, 2, 3 or 4			
•	Digital channels D0 to D15 (except 2000A X-Series)			
LIN standards	LIN 1.3 or LIN 2.X			
Baud rates	2400 b/s to 625 kb/s			
Triggering	Sync break			
	Frame ID (0X00HEX to 0X3FHEX)			
	Frame ID and data			
	Parity error			
	Checksum error			
Hardware-based decode	Frame ID (6-bit hex digits in yellow)			
	Frame ID and optional parity bits (8-bit hex digits in yellow if valid, red if parity bit error)			
	Data bytes (hex digits in white)			
	Check sum (hex digits in blue = valid, hex digits in red = error)			
	Sync error ("SYNC" in red)			
	THeader-max ("THM" in red)			
	TFrame-max ("TFM" in red)			
	Parity error ("PAR" in red)			
	LIN 1.3 wake-up error ("WUP" in red)			
	Idle bus (mid-level bus trace in dark blue)			
	Active bus (bi-level bus trace in dark blue)			
Symbolic triggering based on -ldf file	Message names			
(except 2000A and 3000A X-Series)	Message and signal values/encoded states			
Multi-bus analysis	LIN plus one other serial bus, including another LIN bus. (except 2000A X-Series)			

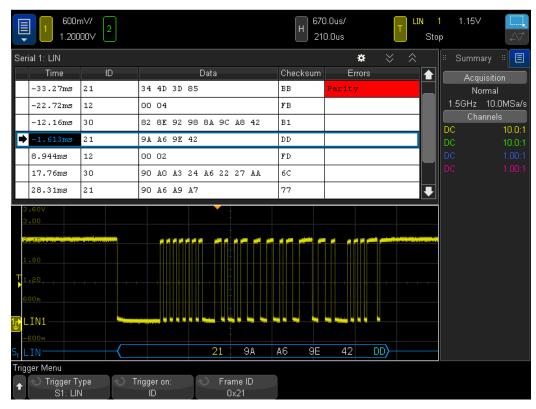


Figure 3. LIN decode on an InfiniiVision X-Series oscilloscope.

FlexRay

Table 5: FlexRay Performance Characteristics

FlexRay input source	Channel 1, 2, 3 or 4 (using differential probe)		
FlexRay channels	A or B		
Baud rates	2.5 Mbps, 5.0 Mbps and 10 Mbps		
Frame triggering	Frame type: Startup (SUP), not startup (~SUP), sync (SYNC), not sync (~SYNC), null (NULL), not null		
	(~NULL), normal (NORM) and All		
	Frame ID: 1 to 2047 (decimal format) and All		
	Cycle		
	Base: 0 to 63 (decimal format) and All		
	Repetition: 1, 2, 4, 8, 16, 32, 64 (decimal format) and All		
Error triggering	All errors		
	Header CRC error		
	Frame CRC error		
Event triggering	Wake-up		
	TSS (transmission start sequence)		
	BSS (byte start sequence)		
	FES/DTS (frame end or dynamic trailing sequence)		
Frame decoding	Frame type (NORM, SYNC, SUP, NULL in blue)		
	Frame ID (decimal digits in yellow)		
	Payload-length (decimal number of words in green)		
	Header CRC (hex digits in blue if valid or red digits if invalid)		
	Cycle number (decimal digits in yellow)		
	Data bytes (HEX digits in white)		
	Frame CRC (hex digits in blue if valid or red digits		
Totalize function	Total frames		
	Total synchronization frames		
	Total null frames		
Eye-diagram mask testing (requires	TP1 standard voltage (10 Mbps only)		
mask test option plus downloadable	TP1 increased voltage (10 Mbps only)		
mask files)	TP11 standard voltage (10 Mbps only)		
	TP11 increased voltage (10 Mbps only)		
	TP4 10 Mbps, TP4 5 Mbps and TP4 2.5 Mbps		
Multi-bus analysis	FlexRay plus one other serial bus (including another FlexRay bus)		

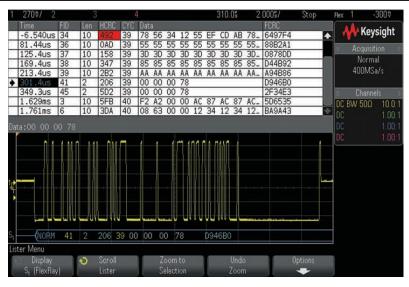


Figure 4. FlexRay decode on an InfiniiVision X-Series oscilloscope

SENT (Single Edge Nibble Transmission)

Table 6: SENT Performance Characteristics

CAN input source	Analog channels 1, 2, 3 or 4		
•	Digital channels D0 to D15 non-differential		
Clock period	1 μs to 300 μs with user-defined tolerance setting from 3 to 30%		
Number of nibbles	1 to 6		
Idle state	High or low		
CRC format	2008 or 2010 standards		
Pause pulse/SPC mode	Pause On, Pause Off, or SPC Mode		
Message format	Fast Nibbles (All)		
	Fast Signals (only)		
	Fast + Short Serial		
	Fast + Enhanced Serial (automatically detects bit format: 12-bit data/8-bit ID or 16-bit data/4-bit ID)		
	Short Serial (only)		
	Enhanced Serial (only)		
Number of defined signals	1 to 6 (each specified by start bit #, number of bits and nibble order)		
Numerical format of signals	Hexadecimal, unsigned decimal or transfer function with user-defined multiplier and offset for each defined signal		
Triggering	Start of fast channel message		
	Start of slow channel message		
	Fast channel status and communication nibble + data		
	Slow channel message ID		
	Slow channel message ID + data		
	Tolerance violation (sync pulse width exceeds user-specified tolerance)		
	Fast channel CRC error		
	Slow channel CRC error		
	All CRC errors		
	Pulse period error (if nibbles are < 12 or > 27 ticks wide)		
	Successive sync pulses error (if consecutive sync pulse widths are greater than 1/64 difference)		
Fast channel decode	Status & communication nibble (binary digits in green)		
	Data (hex, unsigned decimal or transfer function digits in white based on user-defined signal format)		
	CRC error (hex digit in blue = valid, hex digit in red = error)		
	Pulse period error (< or > in red)		
Slow channel decode	Message ID (hex digits in yellow)		
	Data (hex digits in white)		
	CRC (hex digits in blue = valid, hex digits in red = error)		
Multi-bus analysis	SENT plus one other serial bus, including another SENT bus		

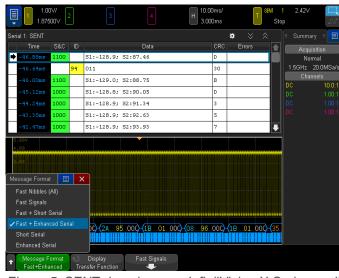


Figure 5. SENT decode on an InfiniiVision X-Series oscilloscope.

PSI5 (based on User-definable Manchester)

Table 7: User-definable Manchester Performance Characteristics

Input source	Analog channels 1, 2, 3 or 4
·	Digital channels D0 to D15 non-differential
Baud rate	500 bps to 5 Mbps
	Automatic RF demodulation at 212 kbps and 424 kbps (NFC-F)
Baud rate tolerance	5 to 30%
Display format	Word or bits
Polarity	Rising edge = 1 or falling edge = 1
Bit order	MSB or LSB (MSB only in binary display format)
Idle	1.5 to 32 bits
Sync size	0 to 255 bits
Header size (word format only)	0 to 32 bits
Number of words (word format only)	1 to 255 or auto
Data word size (word format only)	2 to 32 bits
Trailer size (word format only)	0 to 32 bits (0 if using "Auto" number of words)
Triggering	SOF (Start-of-frame)
	Value (first 4 to 128 bits entered in binary format)
	Manchester error
Decoding (word format)	Decode base (HEX, ASCII or unsigned decimal)
	Header field (all digits in yellow)
	Data field (all digits in white)
	Trailer (all digits in blue)
Decoding (bit format)	All binary digits in white
Multi-bus analysis	User-definable Manchester plus one other serial bus
	· · · · · · · · · · · · · · · · · · ·

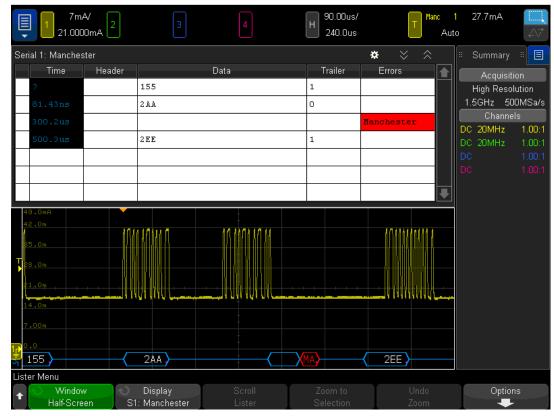


Figure 6. PSI5 decode on an InfiniiVision X-Series oscilloscope.

User-definable NRZ (non-return to zero)

Table 8: User-definable NRZ Performance Characteristics

Analog channels 1, 2, 3 or 4	
Digital channels D0 to D15 non-differential	
5 kbps to 5 Mbps	
Word or bits	
High = 1 or low = 1	
MSB or LSB (MSB only in binary display format)	
1.5 to 32 bits	
High or low	
0 to 255 bits	
0 to 32 bits	
1 to 255	
2 to 32 bits	
0 to 32 bits	
SOF (Start-of-frame)	
Value (first 4 to 128 bits entered in binary format)	
Decode base (HEX, ASCII or unsigned decimal)	
Header field (all digits in yellow)	
Data field (all digits in white)	
Trailer (all digits in blue)	
All binary digits in white	
User-definable NRZ plus one other serial bus	

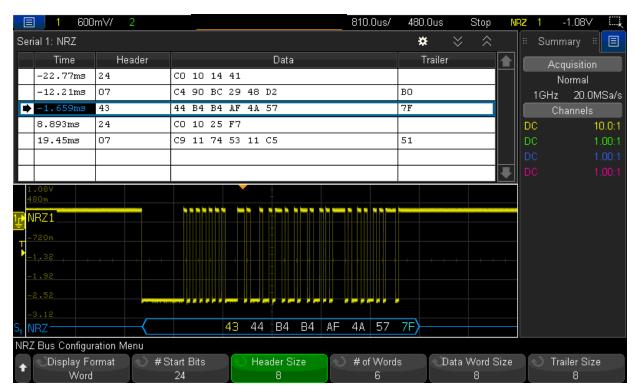


Figure 7. User-definable NRZ decode on an InfiniiVision X-Series oscilloscope.

CXPI (Clock Extension Peripheral Interface)

Table 9: CXPI Performance Characteristics

CXPI input source	Analog channels 1, 2, 3 or 4
Baud rates	9.6 kb/s to 40 kb/s (20 kb/s typical) with tolerance setting
Triggering	SOF (Start-of-frame)
	EOF (End-of-frame)
	PTYPE
	Frame ID (PTPYE present or not present)
	Frame ID + info + data
	Frame ID + info + data (long frame)
	CRC field error (filtered by ID)
	Parity error
	Inter-byte space error (filtered by ID)
	Inter-frame space error (filtered by ID)
	Framing error (filtered by ID)
	Data length error (filtered by ID)
	Sample error
	All errors
	Sleep frame
	Wakeup pulse
Hardware-based decode	Frame ID (hex digits in yellow if valid or red if parity error)
	Data length code (DLC = with decimal digits in blue)
	Network management (NM) bits (binary digits in green)
	Counter (CT) bits (binary digits in yellow)
	Data (hex digits in white)
	CRC (hex digits in blue = valid, hex digits in red = error)
	Idle bus (mid-level dark blue bus trace)
	Active bus (bi-level dark blue bus trace with embedded decode within)
	Inter-byte space error (IBS ERR in red)
	Data length error (LEN ERR in red)
	Sleep mode (SLEEP MODE in orange within bi-level orange bus trace)
	Wakeup pulse (WAKEUP PULSE in blue with bi-level blue bus trace)
Multi-bus analysis	CXPI plus one other serial bus

Figure 8. CXPI decode on an InfiniiVision X-Series oscilloscope.

Advanced Analysis

Mask Test (pass/fail waveform limit testing)

If you need to validate the quality and stability of your electronic components and systems, the InfiniiVision oscilloscope's mask/waveform limit testing capability, which is enabled with the Automotive Software Package, can save you time and provide pass/fail statistics almost instantly. Mask testing offers a fast and easy way to test your signals to specified standards, as well as the ability to uncover unexpected signal anomalies, such as glitches. Mask testing on other oscilloscopes is usually based on software-intensive processing technology, which tends to be slow.

The InfiniiVision scope's mask testing is based on hardware-based technology, meaning that they can perform up to 270,000 real-time waveform pass/fail tests per second. This makes your testing throughput orders of

Figure 9. CAN FD eye-diagram mask testing.

magnitude faster than you can achieve on other oscilloscope mask test solutions.

- Test up to 270,000 waveforms per second with the industry's fastest hardware-accelerated mask testing technology
- · Automatic mask creation using input standard
- Easily download multi-region masks and setups based on industry standards (CAN, CAN FD, and SENT eye-diagram and pulse-shape mask files available for download at no charge)
- Detailed pass/fail statistics
- Test to high-quality standards based on sigma
- Multiple user-selectable test criteria

Table 10. Mask Test Performance Characteristics

Mask test source	Analog channels 1, 2, 3, or 4		
Maximum test rate	2000 X-Series: Up to 50,000 waveforms tested per second		
	3000 and 4000 X-Series: Up to 270,000 waveforms tested per second		
	6000 X-Series: Up to 130,000 waveforms tested per second		
Acquisition modes	Real-time sampling-non-averaged, Real-time sampling-averaged		
Mask creation			
 Automask-divisions 	± X divisions, ± Y divisions		
- Automask-absolute	± X seconds, ± Y volts		
- Mask file import	Up to 8 failure regions (created in text editor)		
Mask scaling	Source lock on (mask automatically re-scales with scope settings)		
	Source lock off (mask scaling fixed relative to display when loaded or created)		
Test criteria	Run until forever, Minimum number of tests, Minimum time, Minimum sigma		
Action on error	Stop acquisitions, save image, print, perform measurements		
Trigger output	On failure		
Statistics display	Number of tests, Number of failures (for each channel tested), Failure rate (for each channel tested), Test time (hours – minutes – seconds), Sigma (actual versus maximum without failures)		
Display formats	Mask – translucent gray, Failing waveform segments – red, Passing waveform segments – channel color		
Save/recall	4 non-volatile internal registers (.msk format), USB memory stick (.msk format)		

Frequency Response Analysis (Bode gain & phase plots)

Frequency Response Analysis (FRA) is often a critical measurement used to characterize the frequency response (gain and phase versus frequency) of a variety of today's electronic designs, including passive filters, amplifier circuits, and negative feedback networks of switch mode power supplies (loop response). FRA capability is included in the Automotive Software Package. This frequency-domain measurement capability is achieved with a swept gain and phase measurement versus frequency (Bode plot). The InfiniiVision oscilloscope uses the scope's built-in waveform generator (WaveGen) to stimulate the circuit under test at various frequency settings and then captures the input and output signals using two channels of the oscilloscope. At each test

Figure 10. Frequency response analysis (gain & phase) on a bandpass filter.

frequency, the scope measures, computes, plots gain (20LogV_{OUT}/V_{IN}) logarithmically and phase linearly.

- Dynamic range: > 80 dB (typical)
- Frequency range: 10 Hz to 20 MHz
- Sweep or single frequency test modes
- Fixed test amplitude or custom Amplitude Profile
- 60 to 1000 points across Start/Stop sweep range
- Two pair of tracking gain and phase markers
- Plots gain and phase and tabular view of test results
- Easily export and/or save measurement results in .csv format for offline analysis

Table 11. Frequency Response Analysis Performance Characteristics

	Frequency Response Analysis		
Frequency mode	Sweep or single		
Frequency range	10 Hz to 20 MHz		
Test amplitude modes	Fixed or amplitude	e profile	
Test amplitude range	3000T:	10 mVpp to 2.5 Vpp into 50-Ω load	
		20 mVpp to 5.0 Vpp into high impedance load	
	4000A/6000A:	10 mVpp to 5 Vpp in 50-Ω load	
		20 mVpp to 10.0 Vpp into high impedance load	
Input and output sources	Channel 1, 2, 3, and 4		
Number of test points	60 to 1000 points across Start/Stop sweep range		
Test results	Overlaid gain and phase plot and tabular view		
Dynamic range	> 80 dB (typical) based on 0 dBm (630 mVpp) input into 50-Ω load		
Measurements	Dual pair of tracking gain and phase markers		
Plot scaling	Auto-scaled during test and manual setting after test		

Advanced Waveform Math (3000A X-Series only)

Advanced waveform math functions come standard on all models of the InfiniiVision X-Series oscilloscopes except for the 3000A Series. Refer to the appropriate InfiniiVision X-Series oscilloscope data sheet to see a complete list of standard waveform math functions on each model. When licensed with Automotive Software Package, advanced waveform math functions are also enabled on the InfiniiVision 3000A Series oscilloscope.

The Keysight 3000A X-Series oscilloscopes come standard with the following waveform math functions:

- Add
- Subtract
- Multiply
- Divide
- Integrate
- Differentiate
- Square Root
- FFT

The Automotive Software Package adds the following waveform math functions on the Keysight 3000A X-Series:

- Ax + B
- Square
- Absolute
- Common Logarithm
- Natural Logarithm
- Exponential
- Base 10 Exponential
- Low-pass Filter
- High-pass Filter
- Measurement Trend
- Magnify
- Chart Logic Bus Timing
- Chart Logic Bus State

Figure 10. Measurement trend math function used to plot frequency versus time of a FM burst.

Probing Differential Serial Buses

Many of today's serial buses are based on differential signaling including CAN, CAN FD, and FlexRay. Keysight offers a wide range of differential active probes compatible with the InfiniiVision X-Series oscilloscopes for various bandwidth and dynamic range applications. Table 12 shows the differential probes that Keysight recommends for each of the listed automotive differential serial buses.

Figure 11. Keysight's N2818A 200-MHz differential active probe.

Table 12. Recommended probes for automotive differential buses

Differential bus (max bit rate)	N2791A (25-MHz bandwidth)	N2818A ¹ (200-MHz bandwidth)
CAN (1 Mbps)	Χ	Χ
CAN FD (10 Mbps data phase)		X
FlexRay (10 Mbps)		X

^{1.} The N2818A differential probe is not compatible with Keysight's InfiniiVision 2000 X-Series oscilloscopes.

If you need to connect to DB9-SubD connectors on your differential CAN, CAN FD and/or FlexRay bus, Keysight also offers the CAN/FlexRay DB9 probe head (part number 0960-2926) shown in Figure 12. This probe head makes it quick and easy to connect to your serial buses Fig during the prototype phase of development and is compatible with Keysight's various differential probing solutions.

Figure 12. DB9-SubD probe head adapter.

Extreme Temperature Probing

When probing differential signals inside environmental chambers at extreme temperatures, Keysight offers the N7013A extreme temperature extension kit shown in Figure 12. The N7013A is compatible with the N2791A and N2818A differential probes and can operate in temperatures ranging from –40 to +85 °C. To learn more about Keysight's extreme temperature probing solutions for automotive applications, refer to the Extreme Temperature Probing Solutions selection guide (publication number 5991-3504EN) listed at the end of this document.

Figure 13. Extreme temperature probing kit.

Related Literature

Table 13. Related literature

Publication title	Publication number
Debug Automotive Serial Buses Faster – Application Note	5991-0512EN
CAN-dbc Symbolic Trigger and Decode - Application Note	5991-2847EN
CAN Eye-Diagram Mask Testing - Application Note	5991-0484EN
CAN FD Eye-Diagram Mask Testing - Application Note	5992-0437EN
Characterizing CAN Bus Arbitration - Application Note	5991-4166EN
FlexRay Physical Layer Eye-diagram Mask Testing - Application Note	5990-4923EN
SENT Automotive Sensor Physical Layer Testing – Application Note	5992-3167EN
PSI5 Sensor Serial Bus Testing - Application Note	5992-2269EN
Decoding Automotive Key Fob Communication based on Manchester-encoded ASK Modulation - Application Note	5992-2260EN
Segmented Memory for Serial Bus Applications - Application Note	5990-5817EN
InfiniiVision 2000 X-Series Oscilloscopes - Data Sheet	5990-6618EN
InfiniiVision 3000T X-Series Oscilloscopes - Data Sheet	5992-0140EN
InfiniiVision 4000 X-Series Oscilloscopes - Data Sheet	5991-1103EN
InfiniiVision 6000 X-Series Oscilloscopes - Data Sheet	5991-4087EN
M924XA InfiniiVision PXIe Modular Oscilloscopes - Data Sheet	5992-2003EN
P924XA InfiniiVision USB Oscilloscopes - Data Sheet	5992-2897EN
InfiniiVision Oscilloscope Probes and Accessories - Selection Guide	5968-8153EN
Extreme Temperature Probing Solutions - Data Sheet	5990-3504EN
N2792A/N2818A 200 MHz and N2793A/N2819A 800 MHz Differential Probes - Data Sheet	5990-4753EN

Ordering Information

Table 14. Automotive Software Package model numbers

InfiniiVision Series	Automotive Software Package
2000 X-Series	D2000AUTA
3000 X-Series	D3000AUTA
4000 X-Series	D4000AUTA
6000 X-Series	D6000AUTA
P9240 Series	P9240AUTB
M9240 Series	M9240AUTB

Table 15. Recommended probing solutions

Recommended probes & accessories	Model number
25 MHz differential active probe	N2791A
200 MHz differential active probe (recommended for differential CAN, CAN FD, and FlexRay buses)	N2818A
400 MHz extreme temperature 10:1 passive probe	N7007A
Extreme temperature probing kit for differential probes	N7013A
DB9 probe head adapter (for CAN, CAN FD and FlexRay buses)	0960-2926
150 MHz, 1 mA/div high-sensitivity current probe (for PSI5 measurements)	N7026A

Aero Software Package

For InfiniiVision X-Series Oscilloscopes

The Aero Software Package for Keysight's InfiniiVision oscilloscopes enables protocol triggering and decode for the MIL-STD 1553 and ARINC 429 serial buses. This package also enables other advanced analysis capabilities including eye-diagram mask testing and frequency response analysis (FRA) to help test and debug electronic systems found in the aerospace & defense industries.

Table of Contents

Introduction	3
MIL-STD 1553 Trigger and Decode	5
ARINC 429 Trigger and Decode	6
Mask Testing (pass/fail waveform limits)	7
Frequency Response Analysis (Bode gain & phase plots)	9
Enhanced HDTV Video Triggering and Analysis	10
Advanced Waveform Math (3000A X-Series only)	11
Probing Differential Serial Buses	12
Extreme Temperature Probing	12
Related Literature	13
Ordering Information	13
Flexible Software Licensing and KeysightCare Software Support Subscriptions	14

Introduction

The primary reason engineers use oscilloscopes to debug and characterize serial buses, such as MIL-STD 1553 and ARINC 429 is because of an oscilloscope's inherent ability to characterize the analog quality of these signals. Performing analog characterization using an oscilloscope is often referred to as "physical layer" measurements. Table 1 lists the specific measurement capabilities that are enabled on each series with the Aero Software Package for Keysight Technologies InfiniiVision X-Series oscilloscopes.

Table 1. Aero Software Packages for InfiniiVision Oscilloscopes

InfiniiVision X-Series:		3000A	3000T	4000A	6000A	P9240	M9240
Aero Packag	e Model Number:	D3000AERA	D3000AERA	D4000AERA	D6000AERA	P9240AERB	M9240AERB
Serial Trigger &	er & MIL-STD 1553		✓	✓	✓	✓	✓
Decode	ARINC 429	✓	✓	✓	✓	✓	✓
	Mask Test	✓	✓	✓	✓	✓	✓
Advanced	Frequency Response Analysis (Bode plots)		✓	✓	✓	✓	✓
Analysis	Enhanced HDTV Video Triggering & Analysis	✓	√	√	✓	√	√
	Advanced Math	\checkmark	Std	Std	Std	Std	Std

Although there are many oscilloscopes on the market today from multiple vendors that offer aero-focused options, Keysight's InfiniiVision X-Series oscilloscopes offer some unique measurement capabilities for debugging and characterizing the physical layer of aerospace/defense serial buses including:

- MIL-STD 1553 trigger and decode
- MIL-STD 1553 eye-diagram mask testing
- ARINC 429 trigger and decode
- ARINC 429 eye-diagram mask testing
- Dual-bus time-interleaved protocol lister display
- Hardware-based decoding for responsiveness
- Decoding of all frames captured using segmented memory

To learn more about these advanced measurement capabilities, refer to the list of Keysight aero-focused application notes listed at the end of this document.

Figure 1 shows an example of triggering on and decoding two lanes of Manchester-encoded MIL-STD 1553 bus traffic consisting of command words from the bus controller and status and data word responses from remote terminals.

Figure 1. Capturing CAN bus arbitration while decoding CAN messages symbolically.

MIL-STD 1553 Trigger and Decode

Table 2. MIL-STD 1553 Performance Characteristics

MIL-STD 1553 input source	Analog channels 1, 2, 3 or 4 (using a differential active probe)				
Triggering	Data word start				
	Data word stop				
	Command/status word start				
	Command/status word stop				
	Remote terminal address (hex)				
	Remote terminal address (hex) + 11 bits (binary)				
	Parity error				
	Sync error				
	Manchester error				
Color-coded, hardware-	Base: HEX or binary				
accelerated decode	Command or status word ("C/S" in green)				
	Remote terminal address (hex or binary digits in green)				
	11 Bits following RTA (hex or binary digits in green)				
	Data word ("D" in white)				
	Data word bits (hex or binary digits in white)				
	Parity error (all decoded text in red)				
	Synchronization error ("Sync" in red)				
	Manchester error ("Manch" in red)				
Eye-diagram mask testing	System xfmr-coupled input				
(downloadable mask files	System direct-coupled input				
available at no charge)	BC xfmr-coupled input				
	BC direct-coupled input				
	RT xfmr-coupled input				
	RT xfmr-coupled input				
Multi-bus analysis	MIL-STD 1553 plus one other serial bus, (including another MIL-STD 1553 bus)				

Figure 2. MIL-STD 1553 decode on an InfiniiVision X-Series oscilloscope.

ARINC 429 Trigger and Decode

Table 3. ARINC 429 Performance Characteristics

ARINC 429 input source	Analog channels 1, 2, 3 or 4 (using a differential active probe)				
Baud rates	High (100 kbps)				
	Low (12.5 kbps)				
Triggering	Word start				
	Word stop				
	Label (octal)				
	Label (octal) + bits (binary)				
	Label range (octal)				
	Parity error				
	Word error				
	Gap error				
	Word or gap error				
	All errors				
	All bits (useful for eye-diagram testing)				
	All 0 bits				
	All 1 bits				
Color-coded, hardware-	Word format: Label/SDI/data/SSM or label/data/SSM or label/data				
accelerated decode	Label (octal digits in yellow)				
	SDI (binary digits in blue)				
	Data (hex or binary digits in white)				
	SSM (binary digits in green)				
	Errors (text in red)				
Totalize function	Total errors				
	Total words				
	100 kbps eye test				
Eye-diagram and pulse mask	100 kbps 1's test				
testing (requires DSOX3MASK	100 kbps 0's test				
plus downloadable mask files)	100 kbps null test				
	12.5 kbps eye test				
	12.5 kbps 1's test				
	12.5 kbps 0's test				
	12.5 kbps null test				
Multi-bus analysis	ARINC 429 plus one other bus (including another ARINC 429 bus)				

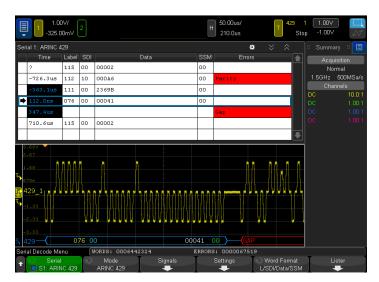


Figure 2. ARINC 429 decode on an InfiniiVision X-Series oscilloscope.

Mask Testing (pass/fail waveform limits)

If you need to validate the quality and stability of your electronic components and systems, the InfiniiVision oscilloscope's mask/waveform limit testing capability, which is enabled with the Aero Software Package, can save you time and provide pass/fail statistics almost instantly. Mask testing offers a fast and easy way to test your signals to specified standards, as well as the ability to uncover unexpected signal anomalies, such as glitches. Mask testing on other oscilloscopes is usually based on software-intensive processing technology, which tends to be slow.

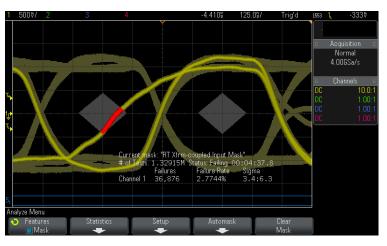


Figure 4. MIL-STD 1553 eye-diagram mask test.

The InfiniiVision scope's mask testing is based on hardware technology, meaning that they can perform up to 270,000 real-time waveform pass/fail tests per second. This makes your testing throughput orders of magnitude faster than you can achieve on other oscilloscope mask test solutions.

Features

- Test up to 270,000 waveforms per second with the industry's fastest hardware-accelerated mask testing technology
- Automatic mask creation using input standard
- Easily download multi-region masks and setups based on industry standards (MIL-STD 1553 and ARINC eye-diagram and pulse-shape mask files available for download at no charge)
- Detailed pass/fail statistics
- Test to high-quality standards based on sigma
- Multiple user-selectable test criteria

Table 4. Mask Test Performance Characteristics

Mask test source	Analog channels 1, 2, 3, or 4
Maximum test rate	2000 X-Series: Up to 50,000 waveforms tested per second
	3000 and 4000 X-Series: Up to 270,000 waveforms tested per second
	6000 X-Series: Up to 130,000 waveforms tested per second
Acquisition modes	Real-time sampling–non-averaged, Real-time sampling–averaged
Mask creation	
 Automask-divisions 	± X divisions, ± Y divisions
 Automask-absolute 	± X seconds, ± Y volts
 Mask file import 	Up to 8 failure regions (created in text editor)
Mask scaling	Source lock on (mask automatically re-scales with scope settings)
	Source lock off (mask scaling fixed relative to display when loaded or created)
Test criteria	Run until forever, Minimum number of tests, Minimum time, Minimum sigma
Action on error	Stop acquisitions, save image, print, perform measurements
Trigger output	On failure
Statistics display	Number of tests, Number of failures (for each channel tested), Failure rate (for each channel tested), Test time (hours –
	minutes – seconds), Sigma (actual versus maximum without failures)
Display formats	Mask – translucent gray, Failing waveform segments – red, Passing waveform segments – channel color
Save/recall	4 non-volatile internal registers (.msk format), USB memory stick (.msk format)

Frequency Response Analysis (Bode gain & phase plots)

Frequency Response Analysis (FRA) is often a critical measurement used to characterize the frequency response (gain and phase versus frequency) of a variety of today's electronic designs, including passive filters, amplifier circuits, and negative feedback networks of switch mode power supplies (loop response). FRA capability is included in the Aero Software Package. This frequencydomain measurement capability is achieved with a swept gain and phase measurement versus frequency (Bode plot). The InfiniiVision oscilloscope uses the scope's built-in waveform generator (WaveGen) to stimulate the circuit under test at various frequency settings and then captures the input and output signals using two channels of the oscilloscope. At each test frequency, the

Figure 5. Frequency response analysis (gain & phase) on a bandpass filter.

scope measures, computes, plots gain (20LogVouT/VIN) logarithmically and phase linearly.

- Dynamic range: > 80 dB (typical)
- Frequency range: 10 Hz to 20 MHz
- Sweep or single frequency test modes
- Fixed test amplitude or custom Amplitude Profile
- 60 to 1000 points across Start/Stop sweep range
- Two pair of tracking gain and phase markers
- Plots gain and phase and tabular view of test results
- Easily export and/or save measurement results in .csv format for offline analysis

Table 5. Frequency Response Analysis Performance Characteristics

	Frequency Re	esponse Analysis		
Frequency mode	Sweep or single			
Frequency range	10 Hz to 20 MHz	7		
Test amplitude modes	Fixed or amplitu	ide profile		
Test amplitude range	3000T:	10 mVpp to 2.5 Vpp into 50-Ω load		
	- -	20 mVpp to 5.0 Vpp into high impedance load		
	4000A/6000A:	10 mVpp to 5.0 Vpp in 50-Ω load		
	·	20 mVpp to 10.0 Vpp into high impedance load		
Input and output sources	Channel 1, 2, 3	, and 4		
Number of test points	60 to 1000 poin	60 to 1000 points across Start/Stop sweep range		
Test results	Overlaid gain and phase plot and tabular view			
Dynamic range	> 80 dB (typical) based on 0 dBm (630 mVpp) input into 50-Ω load			
Measurements	Dual pair of tracking gain and phase markers			
Plot scaling	Auto-scaled dur	ing test and manual setting after test		

Enhanced HDTV Video Triggering and Analysis

Whether you are debugging consumer electronics with HDTV or characterizing a design, the enhanced HDTV video triggering and analysis capabilities that's included in the Aero Software Package provides support for a variety of HDTV standards for triggering and analysis. This enhanced video measurement capability supports a video IRE display grid with cursor measurements performed in video IRE units for NTSC and PAL standards. In addition, enhanced video analysis provides an array of additional HDTV triggering standards that will help speed debug and characterization for engineers working on HDTV video applications.

Enhanced video analysis provides triggering on an array of HDTV standards, including:

- 480p/60, 567p/50, 720p/50, 720p/60
- 1080i/50, 1080i/60
- 1080p/24, 1080p/25, 1080p/30, 1080p/50, 1080p/60
- Generic (custom bi-level and tri-level sync video standards)

Note that InfiniiVision X-Series oscilloscopes already come standard with NTSC, PAL, PAL-M, and SECAM support.

Figure 6. Triggering on 1080p HDTV.

Advanced Waveform Math (3000A X-Series only)

Advanced waveform math functions come standard on all models of the InfiniiVision X-Series oscilloscopes except for the 3000A Series. Refer to the appropriate InfiniiVision X-Series oscilloscope data sheet to see a complete list of standard waveform math functions on each model. When licensed with Aero Software Package, advanced waveform math functions are also enabled on the InfiniiVision 3000A Series oscilloscope.

The Keysight 3000A X-Series oscilloscopes come standard with the following waveform math functions:

- Add
- Subtract
- Multiply
- Divide
- Integrate
- Differentiate
- Square Root
- FFT

The Aero Software Package adds the following waveform math functions on the Keysight 3000A X-Series:

- Ax + B
- Square
- Absolute
- Common Logarithm
- Natural Logarithm
- Exponential
- Base 10 Exponential
- Low-pass Filter
- High-pass Filter
- Measurement Trend
- Magnify
- Chart Logic Bus Timing
- Chart Logic Bus State

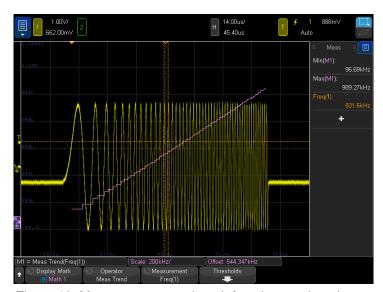
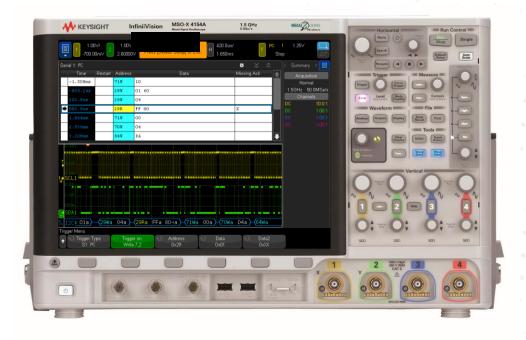



Figure 10. Measurement trend math function used to plot frequency versus time of a FM burst.

Embedded Software Package

for InfiniiVision X-Series Oscilloscopes

The Embedded Software Package for Keysight's InfiniiVision oscilloscopes enables protocol triggering and decode for a broad range of the most common serial buses used today for embedded and mixed-signal designs. This package also enables other advanced analysis capabilities including mask testing and frequency response analysis to help test today's electronic designs.

Table of Contents

Introduction	3
Serial Trigger and Decode	5
I ² C	5
SPI	6
UART (RS-232/485)	7
I ² S (Audio)	8
USB PD (Power Delivery)	
Advanced Analysis	10
Mask Test	10
Frequency Response Analysis (Bode gain & phase plots)	11
Enhanced HDTV Video Triggering and Analysis	12
Advanced Waveform Math (3000A X-Series only)	13
Related Literature	14
Ordering Information	14
Flexible Software Licensing and KeysightCare Software Support Subscriptions	15

Introduction

The primary reason engineers use oscilloscopes to debug and characterize embedded serial buses, such as I²C, SPI, and UART (RS-232 or RS-485), is because of an oscilloscope's inherent ability to characterize the analog quality of these signals and to also time-correlate serial activity with other analog and digital I/O signals in their designs.

Many of the most popular embedded protocol decode & triggering capabilities and advanced analysis features such as mask testing and frequency response analysis (Bode plots) are enabled on InfiniiVision X-Series oscilloscope if licensed with the Embedded Software Package. Table 1 lists the specific measurement capabilities that are enabled on each series with the Embedded Package.

Table 1. Embedded Software Packages for InfiniiVision Oscilloscopes

InfiniiVision Series:		2000A	3000A	3000T	4000A	6000A	P9240	M9240
Embedded Software Package Model Number:		D2000GENA	D3000GENA	D3000GENA	D4000GENA	D6000GENA	P9240GENB	M9240GENB
	I ² C	✓	✓	✓	✓	✓	✓	✓
a g s de	SPI	✓	✓	✓	✓	✓		
Serial Trigger 8 Decode	UART (RS-232/485)	✓	✓	✓	✓	✓	✓	✓
Trig	I ² S (Audio)		✓	✓	✓	✓		
	USB-PD			✓	✓	✓	✓	✓
	Mask Test	✓	✓	✓	✓	✓	✓	✓
Advanced Analysis	Frequency Response Analysis (Bode Plots)			✓	✓	✓	✓	✓
	Enhanced HDTV Video Test		✓	✓	✓	✓	✓	✓
	Advanced Math	Std	✓	Std	Std	Std	Std	Std

Today's embedded designs based on microcontrollers (MCUs) and digital signal processors (DSPs) often include a combination of real-world analog signals, digital I/O buses, and serial buses. Although microcontrollers and DSPs are often thought of as simply digital control and processing devices, most MCUs and DSPs today are mixed-signal devices. Signals that need to be monitored and verified in systems such as these using an oscilloscope include analog I/O, digital I/O ports, and serial communication buses. I²C, SPI, and UART/RS-232 are often used for chip-to-chip communication between MCUs and memory chips, as well as other peripherals. Keysight's InfiniiVision X-Series oscilloscopes have some unique advantages over other oscilloscope when it comes to triggering on and decoding serial buses including the following.

- Hardware-based decoding for responsiveness
- Dual-bus time-interleaved protocol lister display
- Decoding of all frames captured using segmented memory
- Real-time frame/error counter for some protocols

Figure 1 shows an example of a Keysight InfiniiVision X-Series oscilloscope decoding and triggering on an I²C EEPROM data read operation, while also capturing time-correlated analog and digital waveforms.

Figure 1. Decoding and triggering on an I^2C bus using a Keysight mixed signal oscilloscope (MSO) licensed with the Embedded Software Package.

Serial Trigger and Decode

I²C

Table 2: I²C Performance Characteristics

Clock and data input source	e Analog channels 1, 2, 3 or 4			
	Digital channels D0 to D15 (3000, 4000 and 6000 X-Series only)			
Max clock/data rate	Up to 3.4 Mbps			
Triggering	Start condition			
	Stop condition			
	Missing acknowledge			
	Address with no acknowledge			
	Restart			
	EEPROM data read			
	Frame (Start:Addr7:Read:Ack:Data)			
	Frame (Start:Addr7:Write:Ack:Data)			
	Frame (Start:Addr7:Read:Ack:Data:Ack:Data2)			
	Frame (Start:Addr7:Write:Ack:Data:Ack:Data2)			
	10-bit write			
Hardware-based decode	Data (HEX digits in white)			
	Address decode size: 7 bits (excludes R/W bit) or 8 bits (includes R/W bit)			
	Read address (HEX digits followed by "R" in yellow)			
	Write address (HEX digits followed by "W" in light-blue)			
	Restart addresses ("S" in green, followed by HEX digits, followed by "R" or "W")			
	Acknowledges (suffixes "A" or "~A" in the same color as the data or address preceding			
	it)			
	Idle bus (mid-level bus trace in dark blue)			
	Active bus (bi-level bus trace in dark blue)			
	Unknown/error bus (bi-level bus trace in red)			
Multi-bus analysis	I ² C plus one other serial bus, including another I ² C bus. (3000, 4000 and 6000 X-Series only)			

Figure 2. I²C decode on an InfiniiVision X-Series oscilloscope.

SPI

Table 3: SPI Performance Characteristics

MOSI, MISO, Clock and CS input	Analog channels 1, 2, 3 or 4		
source	Digital channels D0 to D15 (excluding 2000 X-Series)		
Max clock/data rate	Up to 25 Mb/s		
Triggering	4- to 64-bit data pattern during a user-specified framing period		
	Framing period can be a positive or negative chip select (CS or ~CS) or clock idle time (timeout)		
Hardware-based decode	Number of decode traces: 2 independent traces (MISO and MOSI)		
	Data (hex digits in white)		
	Unknown/error bus (bi-level bus trace in red)		
	Number of clocks/packet ("XX CLKS" in light-blue above data packet)		
	Idle bus (mid-level bus trace in dark blue)		
	Active bus (bi-level bus trace in dark blue)		
Multi-bus analysis	SPI plus one other serial bus, excluding another SPI bus. (excluding 2000 X-Se		

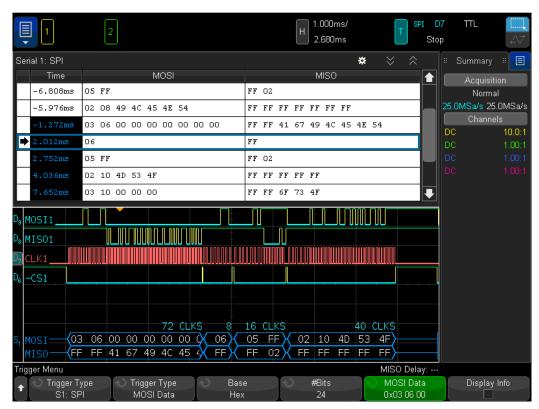


Figure 3. SPI decode on an InfiniiVision X-Series oscilloscope.

UART (RS-232/485)

Table 4: UART Performance Characteristics

Tx and Rx input source	Analog channels 1, 2, 3 or 4			
	Digital channels D0 to D15 (except 2000 X-Series)			
Bus configuration				
Baud rates	100 b/s up to 12 Mb/s (maximum 10 Mb/s on 2000X)			
 Number of bits 	5 to 9			
Parity	None, odd or even			
Polarity	Idle low or idle high			
Bit order	LSB out first or MSB out first			
Triggering	Rx start bit			
	Rx stop bit			
	Rx data			
	Rx 1:data (9-bit format)			
	Rx 0:data (9-bit format)			
	Rx X:data (9-bit format)			
	Rx or Tx parity error			
	Tx start bit			
	Tx stop bit			
	Tx data			
	Tx 1:data (9-bit format)			
	Tx 0:data (9-bit format)			
	Tx X:data (9-bit format)			
	Burst (nth frame within burst defined by timeout)			
Hardware-based decode				
 Number of decode traces 	2 independent traces (Tx and Rx)			
Data format	Binary, hex or ASCII-code characters			
 – Data byte display 	White characters if no parity error, red characters if parity or bus error			
 Idle bus trace 	Mid-level bus trace in blue			
 Active bus trace 	Bi-level trace in blue			
Multi-bus analysis	UART plus one other serial bus, including another UART bus. (except 2000 6000 X-Serie			
Totalize/counter function	Total received frames			
	Total transmitted frames			
	Total parity error frames (with percentage)			

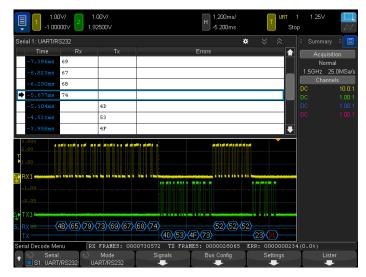


Figure 4. UART decode on an InfiniiVision X-Series oscilloscope.

I²S (Audio)

Table 5: I²S Performance Characteristics

SCLK, WS and SDATA input source	Analog channels 1, 2, 3 or 4
SOLIN, WO and SDATA input source	Digital channels D0 to D15
Bus configuration:	Digital charmers Do to D13
Transmitted word size	4 to 32 bits (user selectable)
Decoded/receiver word size	4 to 32 bits (user selectable)
	Standard, left-justified or right-justified
AlignmentWord select - low	
	Left-channel or right-channel
– SCLK slope	Rising edge or falling edge
- Decoded base	Hex (2's complement) or signed decimal
Baud rates	2400 b/s to 625 kb/s
Triggering:	
 Audio channel 	Audio left, audio right or either
Trigger modes	= (Equal to entered data value)
	≠ (Not equal to entered data value)
	< (Less than entered data value)
	> (Greater than entered data value)
	>< (Within range of entered data values)
	<> (Out of range of entered data values)
	Increasing value that crosses armed (<=) and trigger (>=) entered data
	values
	Decreasing value that crosses armed (>=) and trigger (<=) entered data
	values
Hardware-based decode:	
Left channel	L: "decoded value" in white
 Right channel 	R: "decoded value" in green
– Error	ERR in red (mismatch between transmitted and received word size or invalid input signaling)
 Word size indicator 	"# of TX / # of RX" CLKS in blue displayed above each decoded work
Multi-bus analysis	I ² S plus one other serial bus (excluding another I ² S bus)

Figure 5. I²S decode on an InfiniiVision X-Series oscilloscope.

USB PD (Power Delivery)

Table 6. USB PD Performance Characteristics

USB Type-C CC wire input source	Analog channels 1, 2, 3, or 4		
Baud rate	300 kbps ± 10%		
Triggering	Preamble start		
	EOP		
	Ordered sets:		
	- SOP, SOP', SOP', SOP' debug, SOP' debug, hard reset, cable reset		
	Errors:		
	- CRC error, Preamble error		
	Header content (qualified on SOP, SOP', SOP', or none):		
	 Control message (GoodCRC, Accept, Reject, Get_Source_Cap, etc. ¹) 		
	 – Data message (Source_Cap, Request, BIST, etc. ¹) 		
	 Extended message (Source_Cap_Extended, Status, Battery_Cap, etc. ¹) 		
	- Value (Hex - 4 nibbles)		
Hardware-based decode	Preamble (PRE in blue)		
(Time-correlated decode trace	Ordered set (symbolic name in blue)		
below waveform and protocol lister table above waveform)	Header (Hex digits in yellow)		
	Data (32-bit Hex objects in white)		
	CRC (Hex in green)		
	End of packet (EOP in blue)		
	Symbolic:		
	- Control messages		
	– Data messages		
	 Extended messages 		
	 Source capabilities (in Volts/Amps) 		
	Sink capabilities (in Volts/Amps)		
	 Structured vendor defined message commands 		
Multi-bus analysis USB PD plus one other serial bus			

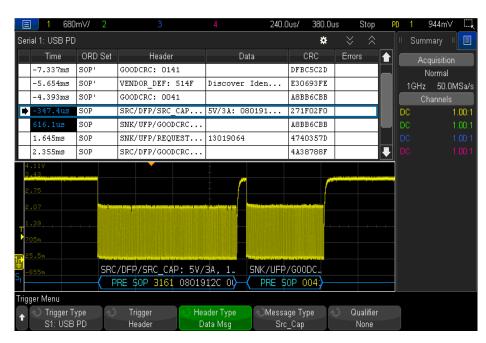


Figure 6. USB PD decode on an InfiniiVision X-Series

Advanced Analysis

Mask Test

If you need to validate the quality and stability of your electronic components and systems, the InfiniiVision oscilloscope's mask/waveform limit testing capability, which is enabled with the Embedded Software Package, can save you time and provide pass/fail statistics almost instantly. Mask testing offers a fast and easy way to test your signals to specified standards, as well as the ability to uncover unexpected signal anomalies, such as glitches. Mask testing on other oscilloscopes is usually based on software-intensive processing technology, which tends to be slow.

The InfiniiVision scope's mask testing is based on hardware technology, meaning that they can perform up to 270,000 real-time waveform pass/fail tests per second. This makes your testing throughput orders of magnitude faster than you can achieve on other oscilloscope mask test solutions.

Figure 7. Frequency response of a bandpass filter.

Features

- Test up to 270,000 waveforms per second with the industry's fastest hardware-accelerated mask testing technology
- Automatic mask creation using input standard
- · Easily download multi-region masks and setups based on industry standards
- Detailed pass/fail statistics
- Test to high-quality standards based on sigma
- Multiple user-selectable test criteria

Table 7. Mask Test Performance Characteristics

Mask test source	Analog channels 1, 2, 3, or 4		
Maximum test rate	2000 X-Series: Up to 50,000 waveforms tested per second		
	3000 and 4000 X-Series: Up to 270,000 waveforms tested per second		
	6000 X-Series: Up to 130,000 waveforms tested per second		
Acquisition modes	Real-time sampling-non-averaged, Real-time sampling-averaged		
Mask creation			
 Automask-divisions 	± X divisions, ± Y divisions		
 Automask-absolute 	± X seconds, ± Y volts		
 Mask file import 	Up to 8 failure regions (created in text editor)		
Mask scaling	Source lock on (mask automatically re-scales with scope settings)		
	Source lock off (mask scaling fixed relative to display when loaded or created)		
Test criteria	Run until forever, Minimum number of tests, Minimum time, Minimum sigma		
Action on error	Stop acquisitions, save image, print, perform measurements		
Trigger output	On failure		
Statistics display	Number of tests, Number of failures (for each channel tested), Failure rate (for each channel tested), Test time (hours –		
	minutes – seconds), Sigma (actual versus maximum without failures)		
Display formats	Mask – translucent gray, Failing waveform segments – red, Passing waveform segmen – channel color		
Save/recall	4 non-volatile internal registers (.msk format), USB memory stick (.msk format)		

Frequency Response Analysis (Bode gain & phase plots)

Frequency Response Analysis (FRA) is often a critical measurement used to characterize the frequency response (gain and phase versus frequency) of a variety of today's electronic designs, including passive filters, amplifier circuits, and negative feedback networks of switch mode power supplies (loop response). FRA capability is included in the Embedded Software Package. This frequency-domain measurement capability is achieved with a swept gain and phase measurement versus frequency (Bode plot). The InfiniiVision oscilloscope uses the scope's built-in waveform generator (WaveGen) to stimulate the circuit under test at various frequency settings and then captures the input and output signals using two channels of the oscilloscope. At each test frequency, the scope measures, computes, plots gain (20LogVout/VIN) logarithmically and phase linearly.

Figure 8. Frequency response analysis (gain & phase) on a bandpass filter.

- Dynamic range: > 80 dB (typical)
- Frequency range: 10 Hz to 20 MHz
- Sweep or single frequency test modes
- Fixed test amplitude or custom Amplitude Profile
- 60 to 1000 points across Start/Stop sweep range
- Two pair of tracking gain and phase markers
- Plots gain and phase and tabular view of test results
- Easily export and/or save measurement results in .csv format for offline analysis

Table 8. Frequency Response Analysis Performance Characteristics

	Frequency Response Analysis		
Frequency mode	Sweep or single		
Frequency range	10 Hz to 20 MHz		
Test amplitude modes	Fixed or amplitude profile		
Test amplitude range	3000T:	10 mVpp to 2.5 Vpp into 50-Ω load	
	-	20 mVpp to 5.0 Vpp into high impedance load	
	4000A/6000A:	10 mVpp to 5.0 Vpp in 50-Ω load	
	-	20 mVpp to 10.0 Vpp into high impedance load	
Input and output sources	Channel 1, 2, 3, and 4		
Number of test points	60 to 1000 points across Start/Stop sweep range		
Test results	Overlaid gain and phase plot and tabular view		
Dynamic range	> 80 dB (typical) based on 0 dBm (630 mVpp) input into 50-Ω load		
Measurements	Dual pair of tracking gain and phase markers		
Plot scaling	Auto-scaled during test and manual setting after test		

Enhanced HDTV Video Triggering and Analysis

Whether you are debugging consumer electronics with HDTV or characterizing a design, the enhanced HDTV video triggering and analysis capabilities that's included in the Aero Package provides support for a variety of HDTV standards for triggering and analysis. This enhanced video measurement capability supports a video IRE display grid with cursor measurements performed in video IRE units for NTSC and PAL standards. In addition, enhanced video analysis provides an array of additional HDTV triggering standards that will help speed debug and characterization for engineers working on HDTV video applications.

Enhanced video analysis provides triggering on an array of HDTV standards, including:

- 480p/60, 567p/50, 720p/50, 720p/60
- 1080i/50, 1080i/60
- 1080p/24, 1080p/25, 1080p/30, 1080p/50, 1080p/60
- Generic (custom bi-level and tri-level sync video standards)

Note that InfiniiVision X-Series oscilloscopes already come standard with NTSC, PAL, PAL-M, and SECAM support.

Figure 9. Triggering on 1080p HDTV.

Advanced Waveform Math (3000A X-Series only)

Advanced waveform math functions come standard on all models of the InfiniiVision X-Series oscilloscopes except for the 3000A Series. Refer to the appropriate InfiniiVision X-Series oscilloscope data sheet to see a complete list of standard waveform math functions on each model. When licensed with Embedded Software Package, advanced waveform math functions are also enabled on the InfiniiVision 3000A Series oscilloscope.

The Keysight 3000A X-Series oscilloscopes come standard with the following waveform math functions:

- Add
- Subtract
- Multiply
- Divide
- Integrate
- Differentiate
- Square Root
- FFT

The Embedded SoftwarePackage adds the following waveform math functions on the Keysight 3000A X-Series:

- Ax + B
- Square
- Absolute
- Common Logarithm
- Natural Logarithm
- Exponential
- Base 10 Exponential
- Low-pass Filter
- High-pass Filter
- Measurement Trend
- Magnify
- Chart Logic Bus Timing
- Chart Logic Bus State

Figure 10. Measurement trend math function used to plot frequency versus time of a FM burst.